

City of Ketchum Planning & Building

Floodplain Development Permit and Riparian Alteration Application

NOTE: This permit is required for all properties containing 100 year floodplain area and Riparian Setbacks

PROPERTY OWNER INFORMATION							
	es Beckmann						
Property Owner's Mailing Address	: 4356 N Nines Ridge Lane Boi	se ID 83702					
Phone: 615-478-0415							
Email: jtbeckmann@gmail.c	om						
PROJECT INFORMATION							
Project Name: Beckmann							
	ain point of contact for project): Sh	nawn Rendon					
Project Representative's Phone:							
	ddress: 1034 N Justin Place Me	ridian ID 83646					
Project Representative's Email:	shawnr.rci@gmail.com						
	e-mail: Peter Borner, 208-315-50	060, peter@bornerworks.con	1				
Landscape Architect's name, phon							
Environmental consultant's name,							
	e-mail: Peter Borner, 208-315-50	060, peter@bornerworks.com	n				
Project Address: 591 2nd Ave							
Legal Description of parcel: 0882000060							
Lot Size: Don't know lot size							
Zoning District: RU/T							
Overlay Zones – indicate all that apply: 🛛 Floodplain 🗌 Floodway 🗌 Riparian Zone 🗌 Avalanche 🗌 Mountain							
Brief description of project scope: Bedroom addition and renovation of the existing space.							
Value of Project: \$ 482,000							
TYPE OF PROJECT – indicate all that apply:							
New Building in Floodplain	Building Addition in Floodplain	\Box Streambank Stabilization /	□ Other. Please describe:				
□ Riparian Alteration	Floodplain Development	Stream Alteration					
PROPOSED SETBACKS – if project	is a new building or an addition to a	n existing building					
Front:	Side:	Side: 12.5'	Rear: 16'				
ADDITIONAL INFORMATION							
Will fill or excavation be required i	n floodplain, floodway or riparian zor	ne? Yes 🛛 footing onlyo 🛛					
If Yes, Amount in Cubic Yards:	Fill: CY Excavation:	1 CY					
Will Existing Trees or Vegetation b	e Removed? Yes 🗆	No 🔀					
Will new trees or vegetation be pla	anted? Yes 🗌 💦 No						

Applicant agrees in the event of a dispute concerning the interpretation or enforcement of the Floodplain Management Overlay Application, in which the City of Ketchum is the prevailing party, to pay reasonable attorney fees, including attorney fees on appeal, and expenses of the City of Ketchum. I, the undersigned, certify that all information submitted with and upon this application form is true and accurate to the best of my knowledge and belief.

	4/13/23
Signature of Owner/Representative	Date

City of Ketchum Planning & Building Department

Floodplain Management Overlay and Riparian Alteration Application Rev 02.02.2021

FLOODPLAIN MANAGEMENT OVERLAY EVALUATION STANDARDS

Please provide a narrative to address each of the criteria below.

- Criteria for Evaluation of Applications: The criteria of floodplain development permit applications and riparian alteration permits shall be as follows:
 - 1. The proposal preserves or restores the inherent natural characteristics of the river, floodplain, and Riparian Zone, including riparian vegetation and wildlife habitat. Development does not alter river channel unless all stream alteration criteria for evaluation are also met.
 - 2. No temporary construction activities, encroachment, or other disturbance into the twenty-five foot (25') Riparian Zone, including encroachment of below grade structures, shall be permitted, except for approved stream stabilization work and restoration work associated with a riparian zone that is degraded.
 - 3. No permanent development shall occur within the twenty-five foot (25') Riparian Zone, except for approved stream stabilization work and restoration work associated with permit issued under this title, or exceptions as described below:
 - a. Access to a property where no other primary access is available.
 - b. Emergency access required by the Fire Department.

c. A single defined pathways or staircases for the purpose of providing access to the river channel and in order to mitigate multiple undefined social paths.

- d. Development by the City of Ketchum
- 4. New or replacement planting and vegetation in the Riparian Zone shall include plantings that are low growing and have dense root systems for the purpose of stabilizing stream banks and repairing damage previously done to riparian vegetation. Examples of such plantings most commonly include red osier dogwood, common chokecherry, serviceberry, elderberry, river birch, skunk bush sumac, Beb's willow, Drummond's willow, little wild rose, gooseberry, and honeysuckle. However, in rare instances the distance from the top-of-bank to the mean high-water mark is significant and the native vegetation appropriate for the Riparian Zone are low growing, drought resistant grasses and shrubs. Replacement planting and vegetation shall be appropriate for the specific site conditions. Proposal does not include vegetation within the twenty-five foot (25') Riparian Zone that is degraded, not natural, or which does not promote bank stability.
- 5. Landscaping and driveway plans to accommodate the function of the floodplain allow for sheet flooding. Surface drainage is controlled and shall not adversely impact adjacent properties including driveways drained away from paved roadways. Culvert(s) under driveways may be required. Landscaping berms shall be designed to not dam or otherwise obstruct floodwaters or divert same onto roads or other public pathways.
- 6. Floodwater carrying capacity is not diminished by the proposal.

- 7. Impacts of the development on aquatic life, recreation, or water quality upstream, downstream or across the stream are not negative.
- 8. Building setback in excess of the minimum required along waterways is encouraged. An additional tenfoot (10') building setback beyond the required twenty-five foot (25') Riparian Zone is encouraged to provide for yards, decks and patios outside the twenty five foot (25') Riparian Zone.
- 9. The top of the lowest floor of a building located in, or partially within, the SFHA shall be at or above the Flood Protection Elevation (FPE). A building is considered to be partially within the SFHA if any portion of the building or appendage of the building, such as footings, attached decks, posts for upper story decks, are located within the SFHA. See section 17.88.060, figures 1 and 2 of this chapter to reference construction details. See Chapter 17.08 of this title for definition of "lowest floor."

a. In the SFHA where Base Flood Elevations (BFEs) have been determined, the FPE shall be twenty-four inches (24") above the BFE for the subject property; twenty-four inches (24") or two (2) feet is the required freeboard in Ketchum city limits.

b. In the SFHA where no BFE has been established, the FPE shall be at least two (2) feet above the highest adjacent grade.

- 10. The backfill used around the foundation in the SFHA floodplain shall provide a reasonable transition to existing grade but shall not be used to fill the parcel to any greater extent.
 - a. Compensatory storage shall be required for any fill placed within the floodplain.
 - b. A CLOMR-F shall be obtained prior to placement of any additional fill in the floodplain.
- 11. All new buildings located partially or wholly within the SFHA shall be constructed on foundations that are designed by a licensed professional engineer.
- 12. Driveways shall comply with City of Ketchum street standards; access for emergency vehicles has been adequately provided for by limiting flood depths in all roadways to one foot (1-ft) or less during the 1% annual chance event.
- 13. Landscaping or revegetation shall conceal cuts and fills required for driveways and other elements of the development.
- 14. (Stream alteration.) The proposal is shown to be a permanent solution and creates a stable situation.
- 15. (Stream alteration.) No increase to the one percent (1%) annual chance flood elevation at any location in the community, based on hydrologic and hydraulic analysis performed in accordance with standard engineering practice and has been certified and submitted with supporting calculations and a No Rise Certificate, by a registered Idaho engineer.
- 16. (Stream alteration.) The project has demonstrated No Adverse Impact or has demonstrated all impacts will be mitigated.

- 17. (Stream alteration.) The recreational use of the stream including access along any and all public pedestrian/fisher's easements and the aesthetic beauty shall not be obstructed or interfered with by the proposed work.
- 18. (Stream alteration.) Fish habitat shall be maintained or improved as a result of the work proposed.
- 19. (Stream alteration.) The proposed work shall not be in conflict with the local public interest, including, but not limited to, property values, fish and wildlife habitat, aquatic life, recreation and access to public lands and waters, aesthetic beauty of the stream and water quality.
- 20. (Stream alteration.) The work proposed is for the protection of the public health, safety and/or welfare such as public schools, sewage treatment plant, water and sewer distribution lines and bridges providing particularly limited or sole access to areas of habitation.
- 21. (Wetlands) Where development is proposed that impacts any wetland the first priority shall be to move development from the wetland area. Mitigation strategies shall be proposed at time of application that replace the impacted wetland area with an equal amount and quality of new wetland area or riparian habitat improvement.

APPLICATION CHECKLIST

Please utilize and submit the checklist on the following pages to ensure a complete application.

Floodplain management overlay application certification of completeness is based on submittal of all applicable items on this checklist.

Use for:

- Floodplain Development Permit (includes stream Alteration / streambank stabilization)
- Riparian Alteration

Project name: Beckmann

Reviewed by: Shawn Rendon

DOCUMENTS

- One (1) digital copy of all application materials
- Application form
- □ Evaluation criteria narrative
- Description of proposed development
- Specifications for building construction and materials, flood proofing, filling, grading, dredging, channel improvement/changes and utilities
- Elevation and/or flood proofing certification prepared by a professional engineer for existing and proposed residential and nonresidential structures located partially or wholly in the regulatory floodplain.
 Said floodproofing methods shall meet the criteria in subsection 17.88.060.B of the Ketchum Municipal Code.
- Copy of letter of map amendment based on fill (LOMA-F) application for any proposed fill in the floodplain.
 LOMA-F approval shall be obtained from FEMA prior to issuance of a floodplain development permit.

SITE SURVEY OF EXISTING CONDITIONS (prepared and stamped by a licensed engineer or surveyor) – REQUIRED FOR NEW BUILDINGS OR ADDITIONS TO BUILDINGS IN THE FLOODPLAIN AND ANY WORK WITHIN THE FLOODWAY

- Exterior boundary lines of the property together with dimensions
- □ Topographic survey of the real property at a minimum of one (1) foot contour intervals, significant hillsides may be a minimum of ten (10) foot contour intervals
- Location of any existing dwelling units, other structures, fill, storage of materials, drainage facilities and all improved areas (pavement) with dimensions thereof showing the setback of each structure from the nearest property line
- □ Location of existing channels and ditches and other significant natural features, boundaries of floodway and floodplain, including Base Flood Elevation (BFE) and other site specific information from the studies referred to in Ketchum Municipal Code, subsection 17.88.040.A.3
- ☑ Location and elevations of adjacent streets, water supply and sewer lines, including private wells and/or septic systems

- □ Elevation of the lowest floor (including basement) of all structures existing and proposed partially or wholly located in the one percent (1%) annual chance floodplain, including elevation to which any structure has been or will be floodproofed
- □ Identification of the riparian zone and the "mean high water mark," as defined in Ketchum Municipal Code
- □ Location of previous stream alterations upstream, downstream and along both banks from subject lot
- □ Location of drainage ways, intermittent and year-round, including potential overflow channels or channel movement
- □ Location and dimensions of easements, private and public, within and adjacent to the proposed project together with the purpose thereof
- □ Location of all existing trees to be preserved and significant trees to be removed
- □ Indication of any zoning district overlay which affects the property (floodplain, mountain overlay or avalanche)
- Location of existing structures on adjacent properties

SITE PLAN – REQUIRED FOR ALL PROJECTS.

- Vicinity map
- □ Proposed excavation or land fill including resulting slope grades for the building pad(s), driveways and any other element of the proposed development where excavation or fill will take place
- Drainage plan including offsite improvements such as borrow ditches and culverts and including a plan for on- and off-site improvements to provide for unobstructed conveyance of floodwaters
- □ Location of on-site parking spaces and access thereto, including the dimensions of the spaces and the width and length of access and curb cuts
- Location and dimensions of snow storage areas
- □ Location of dumpster and/or garbage and recycling can storage areas, including the dimensions and proposed fencing or other screening
- □ Location and type of any electrical power transformers, switches and/or sectors
- □ Location and type of all heating, ventilation, air conditioning and other mechanical units
- □ Drip line of all buildings
- Percentage of the lot coverage by proposed building and parking areas together with the total square footage of the parcel of property
- Location of all proposed structures (buildings) and all improved areas (pavement, sidewalk) with dimensions thereof showing the setback of each structure from the nearest property line
- Designation of the zoning district in which the project is located
- □ Location of any zoning district boundary line within the proposed project or the immediate vicinity thereof
- □ For any building in the floodplain with an area below the lowest floor that is below the base flood elevation and has a ceiling height of five feet (5') or greater, the building owner shall sign a non-conversion agreement, that shall run with the property, promising not to improve, finish or otherwise convert the area below the lowest floor to living area and granting the city the right to inspect the enclosed area at its discretion. Such agreement shall be recorded at Blaine County's recorder's office

ARCHITECTURAL PLANS – REQUIRED FOR NEW BUILDINGS OR ADDITIONS TO EXISTING BUILDINGS

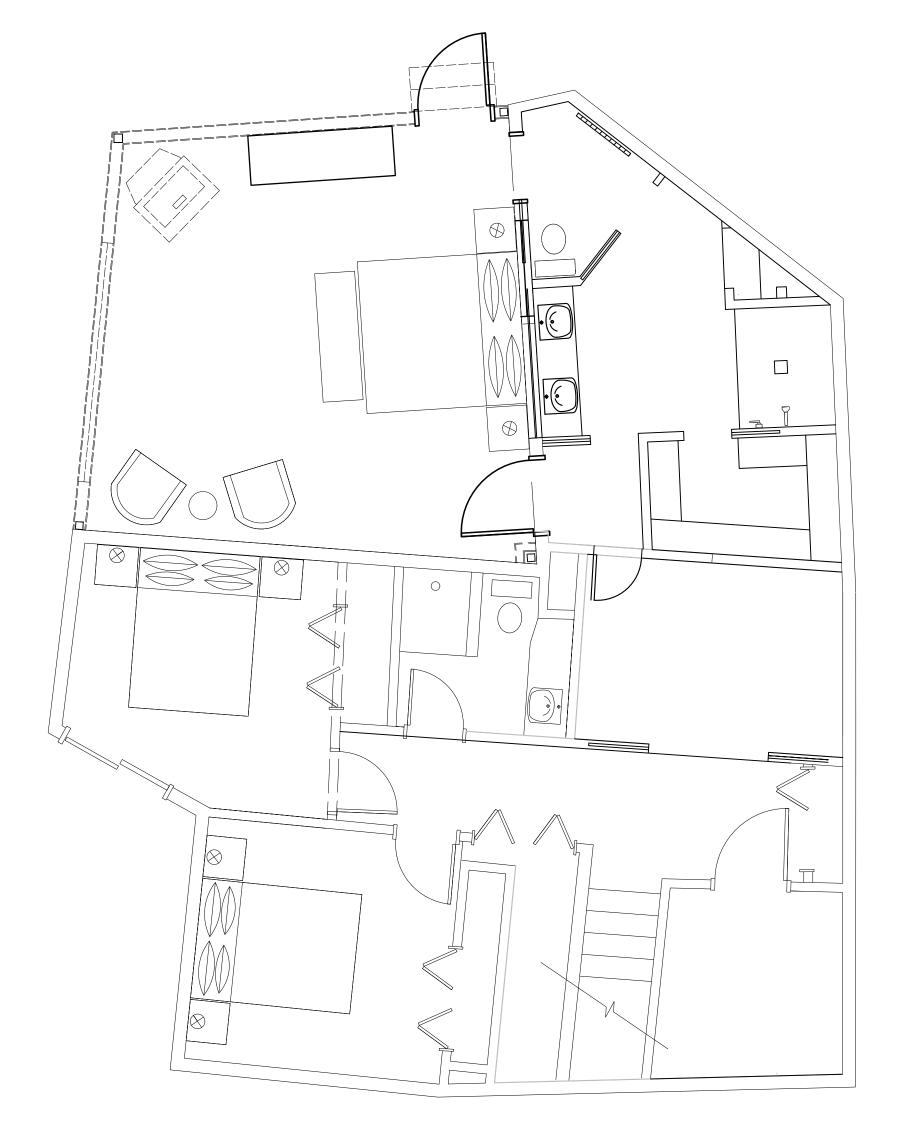
- Floor plans of all floors at not less than one-eighth (1/8) scale
- All exterior elevations
- Roof plan including direction of snow sliding and snow clips if applicable. Location and type of all mechanical equipment and rooftop appurtenances
- Cross-section(s) of the property and proposed building adequately establishing the natural grade, finished grade, slope of land, slope of proposed accesses and grades to all public rights-of-way

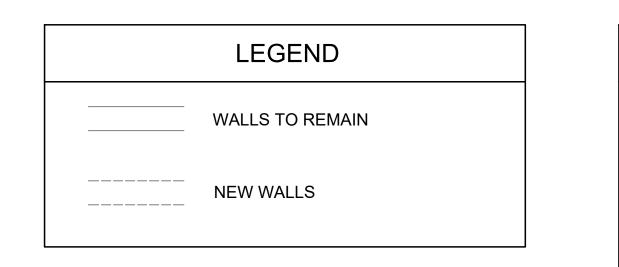
- □ Location and type (cut sheets) of all exterior lighting
- D Model or computer simulation renderings, if required at pre-application design review meeting

LANDSCAPE PLAN – REQUIRED FOR ANY PROJECT PROPOSING TO ALTER VEGETATION IN THE RIPARIAN ZONE OR SPECIAL FLOOD HAZARD AREA

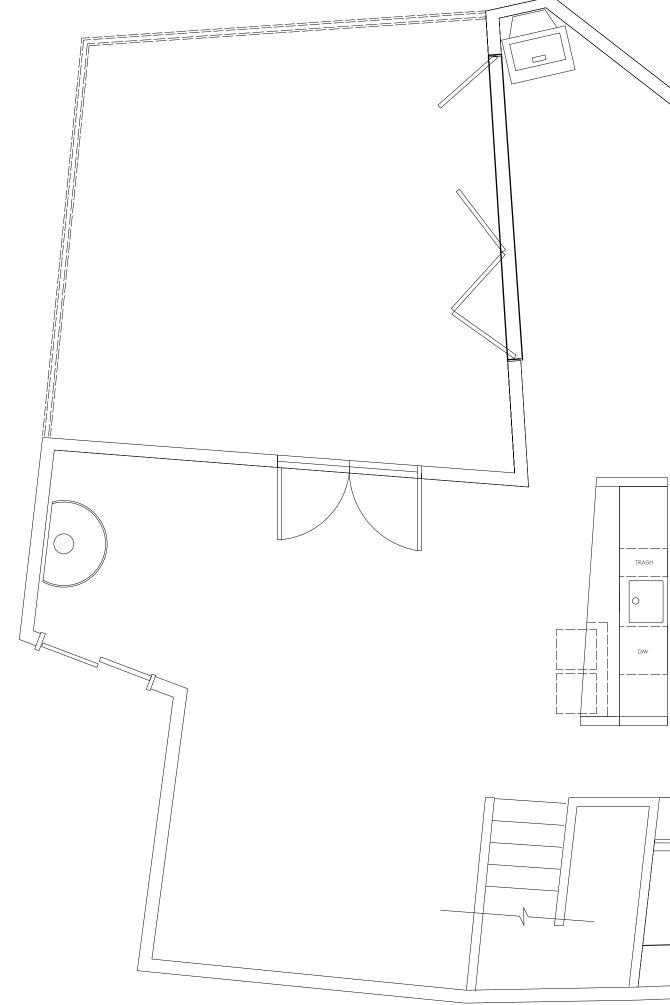
- □ All existing vegetation over 2 inches in caliper, including size and species
- Proposed landscaping of the project including types, quantities and sizes of trees, shrubs, ground cover and other vegetation
- D Proposed landscaping or other improvements within any public rights-of-way
- □ Location, type (materials and colors) and height of walls or fences
- □ Location of parking areas
- □ Location of vehicular and pedestrian circulation patterns, easements and proposed improvements with regard thereto
- □ Irrigation system for landscaping
- Drainage plan including off-site improvements

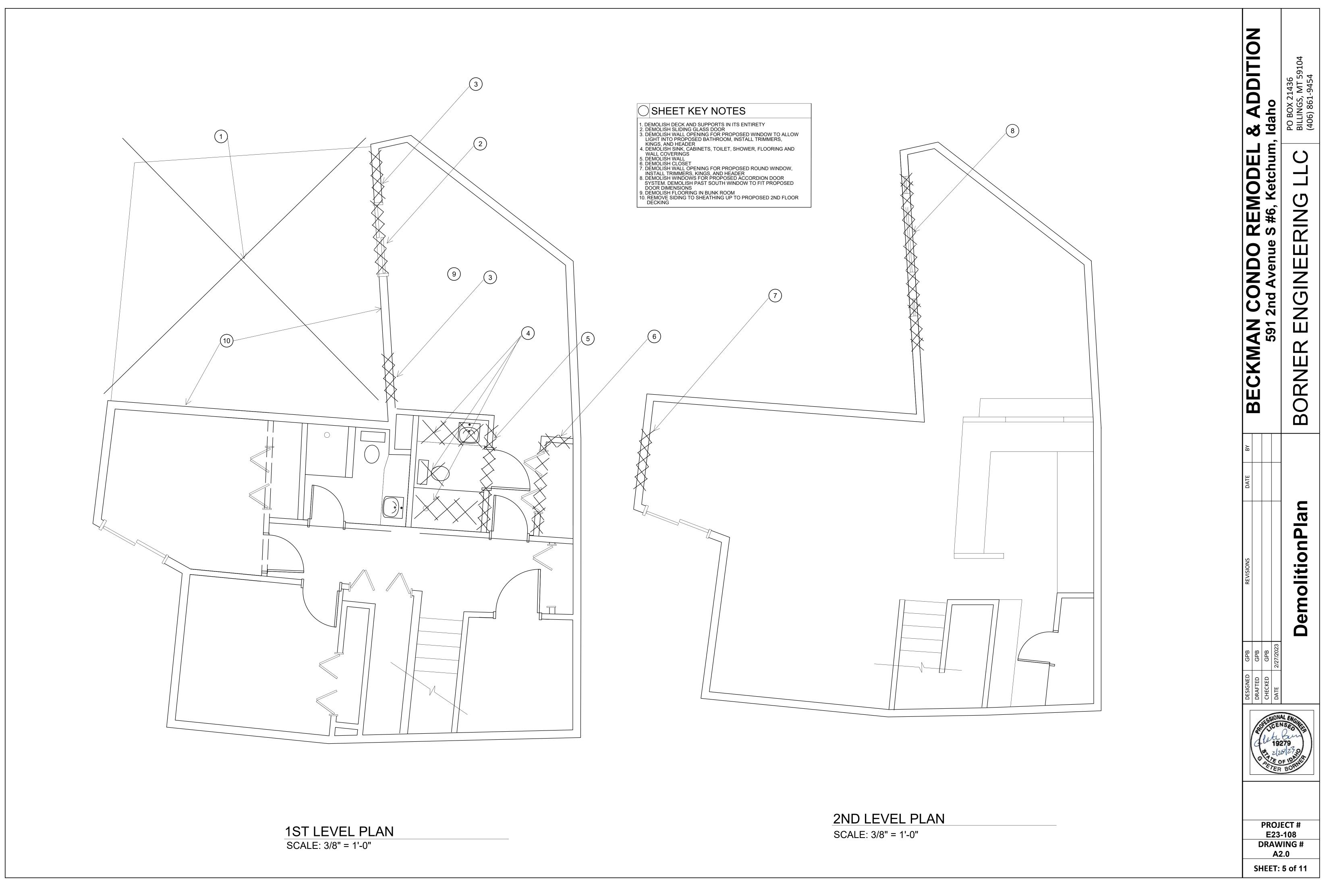
STREAM ALTERATIONS / STREAMBANK STABILIZATION

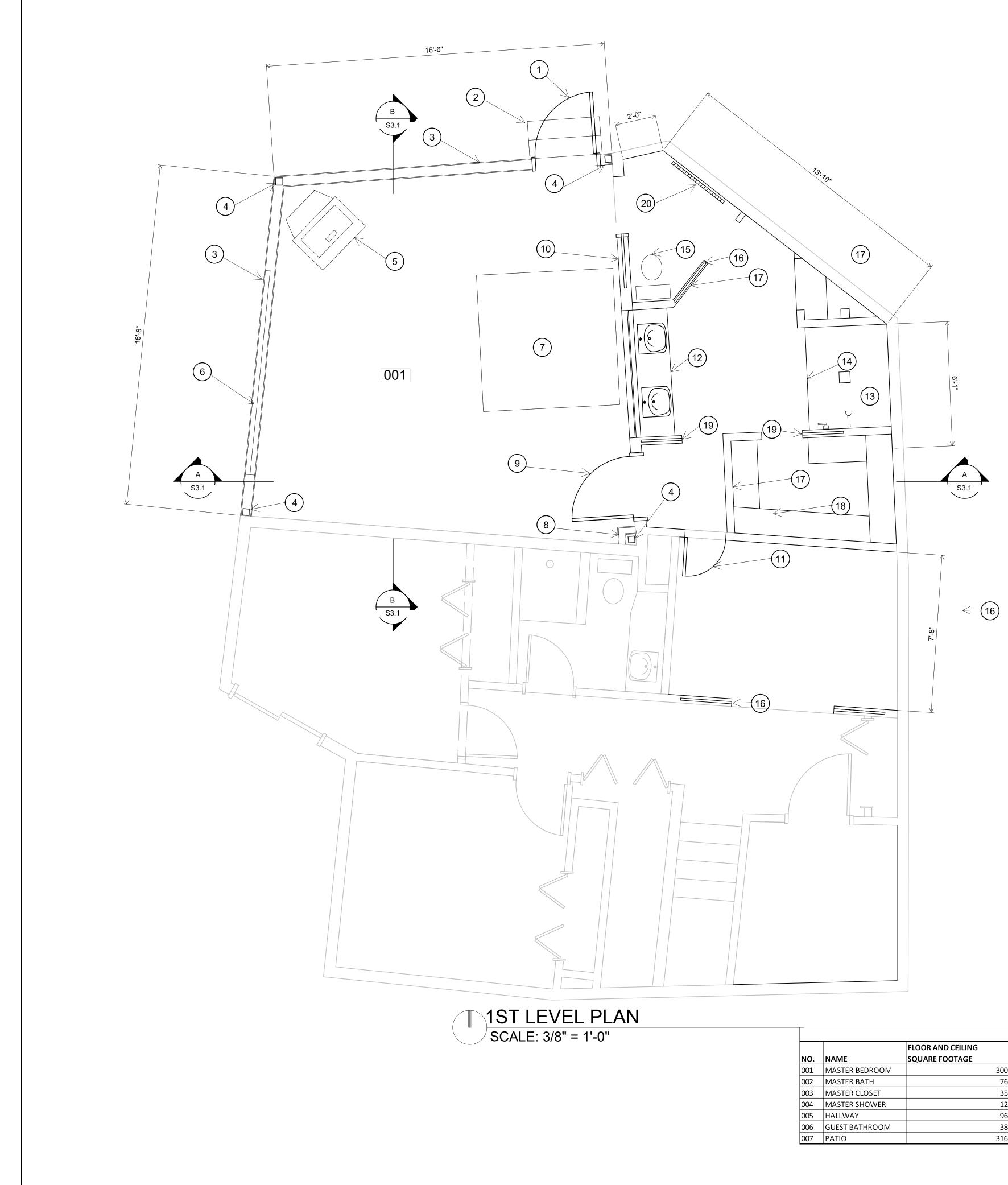

- Copies of the Joint Application for Permits submitted to the U.S. army corps of engineers (USACE) and Idaho department of water resources (IDWR). Please note, USACE and IDWR approvals shall be obtained prior to issuance of a stream alteration permit.
- □ Copy of the USACE permit approval.
- □ Copy of the IDWR permit approval.
- □ Cross section of proposed work
- □ Length of stream to be worked, type of work to be done, type of equipment to be used and starting and completion dates of work
- A valley cross section showing stream channel, floodway limits, elevations of adjacent land areas,
 Special Flood Hazard Area boundary, floodway boundary, existing Mean High Water mark, proposed Mean
 High Water mark, Riparian Zone regulated by the City of Ketchum, proposed excavation, proposed fill.
 A profile showing the slope of the bottom of the channel or flow line of the stream may be
 required upon review of all other material submitted.
- □ For any work proposed to occur in the regulatory floodway: A no net rise certificate, including supporting calculations, prepared and stamped by an Idaho registered professional hydraulic engineer
- □ For any work proposed to occur in the floodway: HEC-RAS model


NO ADVERSE IMPACT STATEMENT – WHERE APPLICABLE

- No Adverse Impact Statement
 - See definition of "No Adverse Impact" in section 17.08.020 of Ketchum Municipal Code.


PROPOSED FIRST FLOOR PLAN SCALE: 1/4" = 1'0"


NC


1. ALL CO AND SMOKE WILL BE BROUGHT

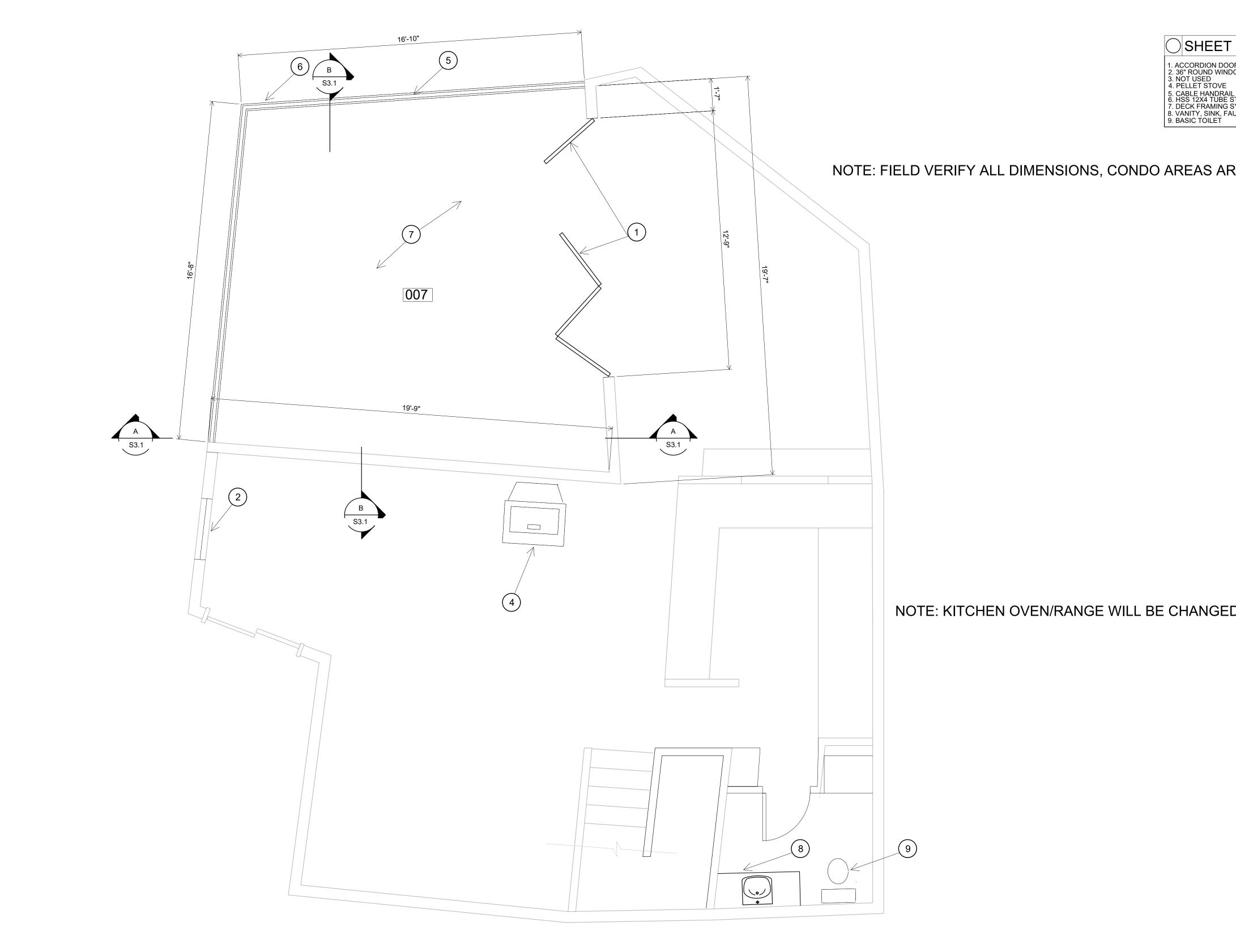
PROPOSED SECOND

IOTES KE DETECTORS T UP TO CODE		LLC PO BOX 21436 BILLINGS, MT 59104 (406) 861-9454
	BECKMAN CONDO REMODE 591 2nd Avenue S #6, Ketchui	BORNER ENGINEERING
	B GPB GPB	
	REVISIONS DATE IONS 3/14/23	Proposed Floor Plan
RANGE	MASTER BATH REVIS	roposed
	DESIGNED DESIGNED DRAFTED CHECKED DATE 3/3/23	₽.
	ROTESSIONAL ROTESSIONAL ROTESSIONAL 1927 1927 ROTESFER	ENGINERA 99 27 Martin 30 Phile 30 Phile
FLOOR PLAN SCALE: 1/4" = 1'0"	PROJE E23-1 DRAWI A1.	108 NG #
	A1.: SHEET: 4	

◯ SHEET KEY NOTES
 EXTERIOR 3'X7' DOOR WOOD STAIRS TO OUTSIDE 2X6 INFILL WALL SEE SECTION HSS 4X4X1/4 COLUMN SUPPORTING 2ND FLOOR DE GAS STOVE WINDOW 96"X30" KING SIZE BED (NOT IN CONTRACT) 2X4 COLUMN CLOSURE WALL 3'X7' DOOR INFILL WALL WALL WITH KINGS, TRIMMERS ND HE/WINDOW, PROVIDE 60"W X 12"H WINDOW FOR NA INTO BATHROOM 24"X7' DOOR VANITY, TWO SINKS, FAUCETS, MIRROR TILE SHOWER (3 WALLS), SHOWER GLASS (ONE W SHOWER FIXTURES SHOWER GLASS AND DOOR BASIC TOILET 30" POCKET DOOR CLOSET SHELFING 24" POCKET DOOR LINEAR DRAIN WITH HANDHELD FOR DOG WASH

NOTE: FIELD VERIFY ALL DIMENSIONS, CONDO AREAS ARE CONSTRUCTED AT UNIQUE AND INCONSISTENT ANGLES

				ROOM FIN	SH SCHEDUL	E		
		FLOOR AND CEILING						
NO.	NAME	SQUARE FOOTAGE	FLOOR	BASE	WALLS	CEILING	COUNTERTOPS	REMARKS
001	MASTER BEDROOM	30	0 ENIGINEERED WOOD	MDF PAINTED	5/8" GYPSUM	5/8" GYPSUM	N/A	PROVIDE 3/4"OSB T&G BELOW FINAL FLOORING SYSTEM
002	MASTER BATH	7	6 TILE FLOOR, WITH ELECTRIC FLOOR HEAT	MDF PAINTED	5/8" GYPSUM	5/8" GYPSUM	QUARTZ	
003	MASTER CLOSET	3	5 CARPET	MDF PAINTED	5/8" GYPSUM	5/8" GYPSUM	MDF SHELVING	
004	MASTER SHOWER	1	2 TILE	MDF PAINTED	5/8" GYPSUM	5/8" GYPSUM	N/A	
005	HALLWAY	9	6 ENGINEERED WOOD	MDF PAINTED	5/8" GYPSUM	5/8" GYPSUM	N/A	PATCH FLOORING REQUIRED FOR PLUMBING UPDATES WITH 3/4" OSB
006	GUEST BATHROOM	3	8 TILE	MDF PAINTED	5/8" GYPSUM	5/8" GYPSUM	QUARTZ	T&G BELOW FINAL FLOORING SYSTEM
007	ΡΑΤΙΟ	31	6 PAVERS	MDF PAINTED	5/8" GYPSUM	5/8" GYPSUM	N/A	

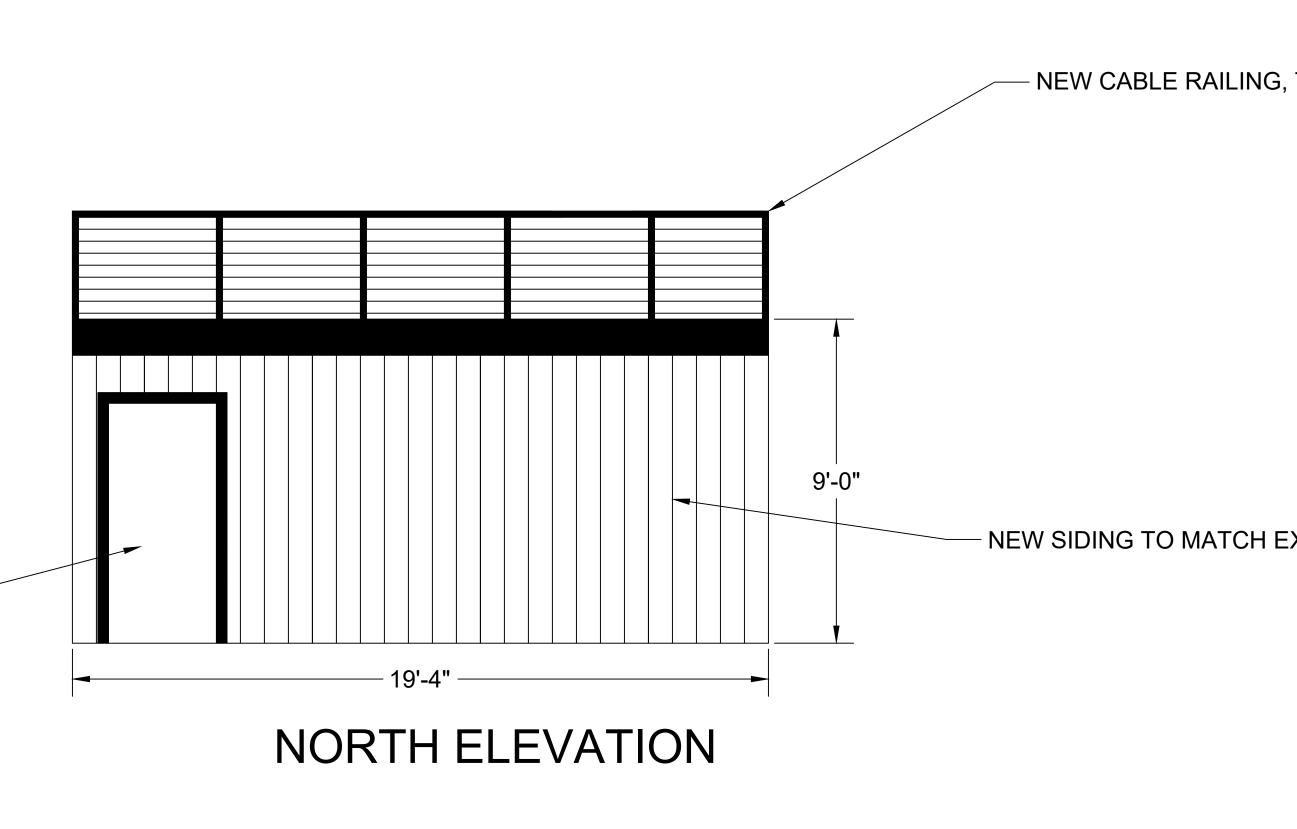

NOTES

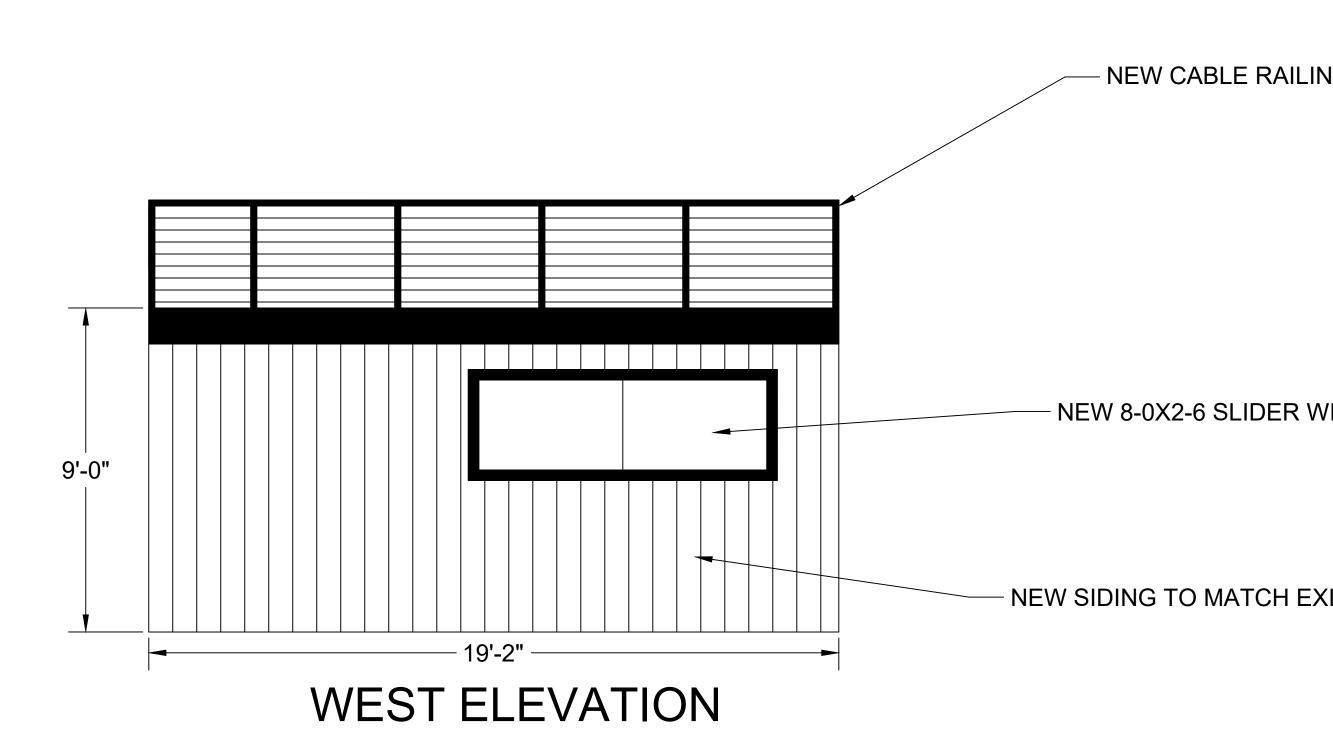
ORTING 2ND FLOOR DECK

IGS, TRIMMERS ND HEADER FOR 12"H WINDOW FOR NATURAL LIGHT

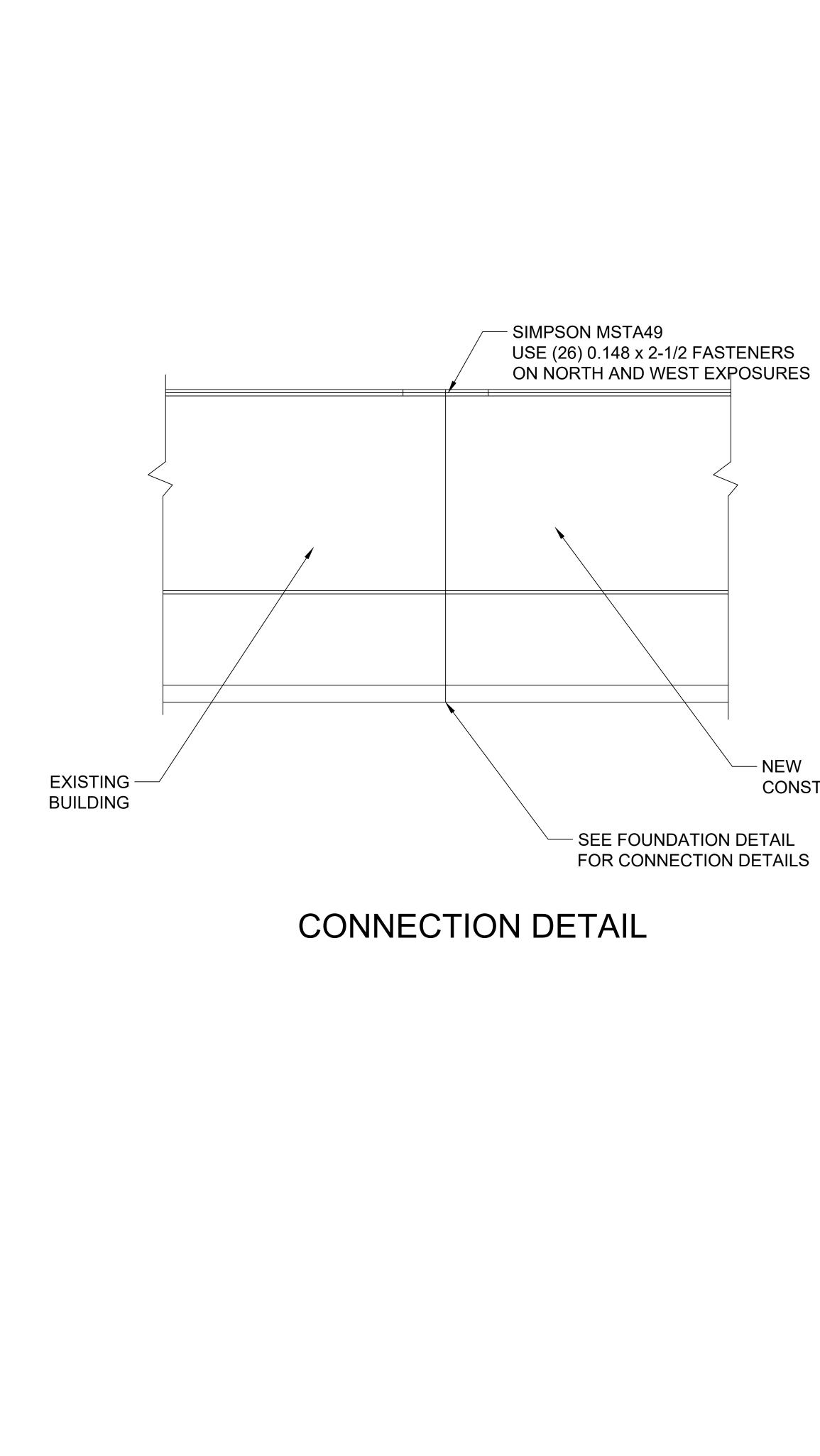
TS, MIRROR IOWER GLASS (ONE WALL),

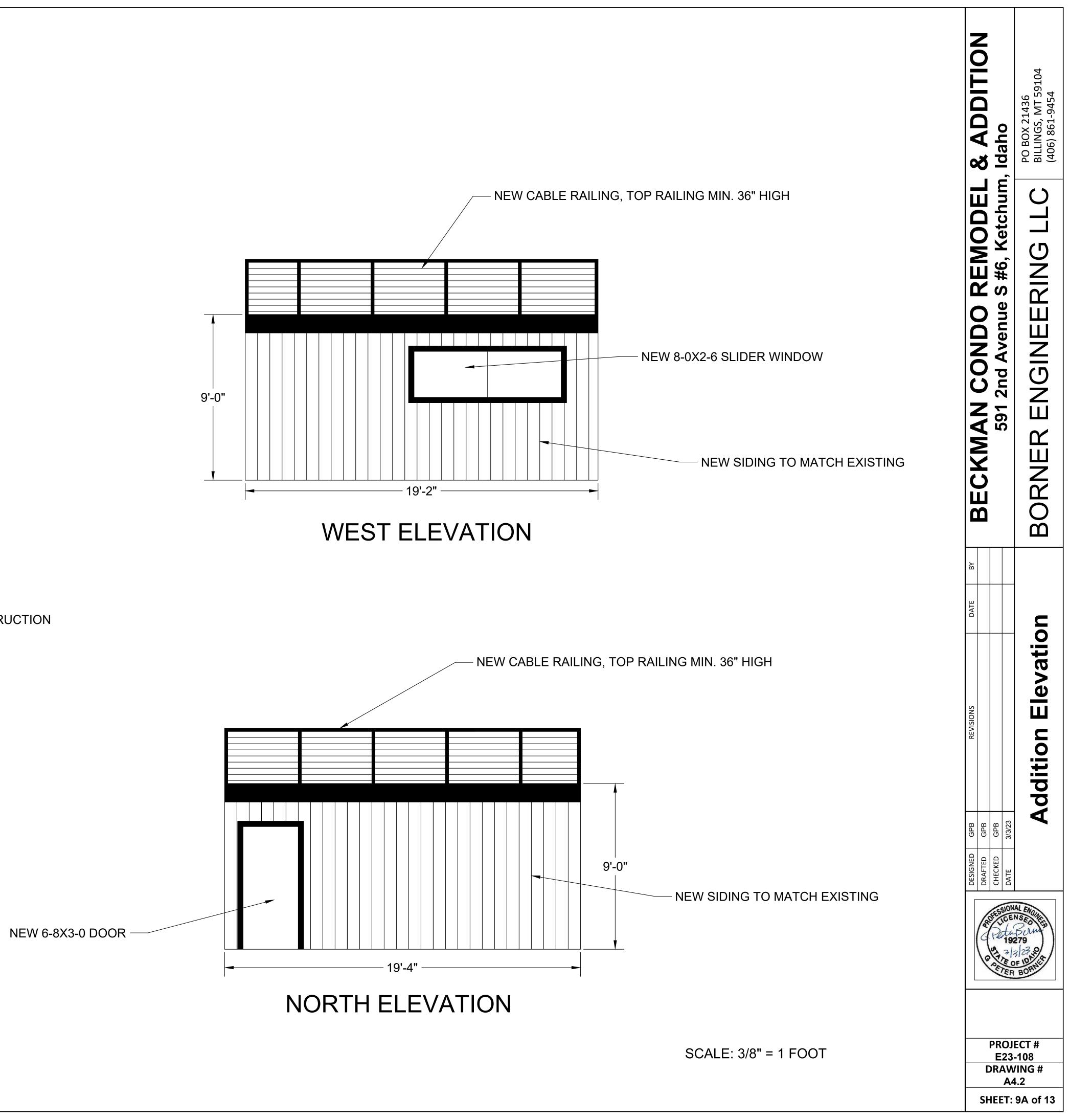
		DESIGNED	GPB	REVISIONS	DATE	ВҮ	
C	1 1 1 C	DRAFTED	GPB	MASTER BATH REVISIONS	3/14/23	GPB	
E DR/	A STA	CHECKED	GPB				501 2nd Avoning C #6 Kotchium Idaho
23 4M A3	CEI ta 19: ER	DATE	3/3/23				JUL AVELINE O #0, NECCIMIII, IMAILO
ECT # -108 /ING # 3.1 6 of 13	AL ENGINERA VS&O 279 2340 E 10AUE BORNUER			1st Floor Plan			BORNER ENGINEERING LLC PO BOX 21436 BILLINGS, MT 59104 (406) 861-9454

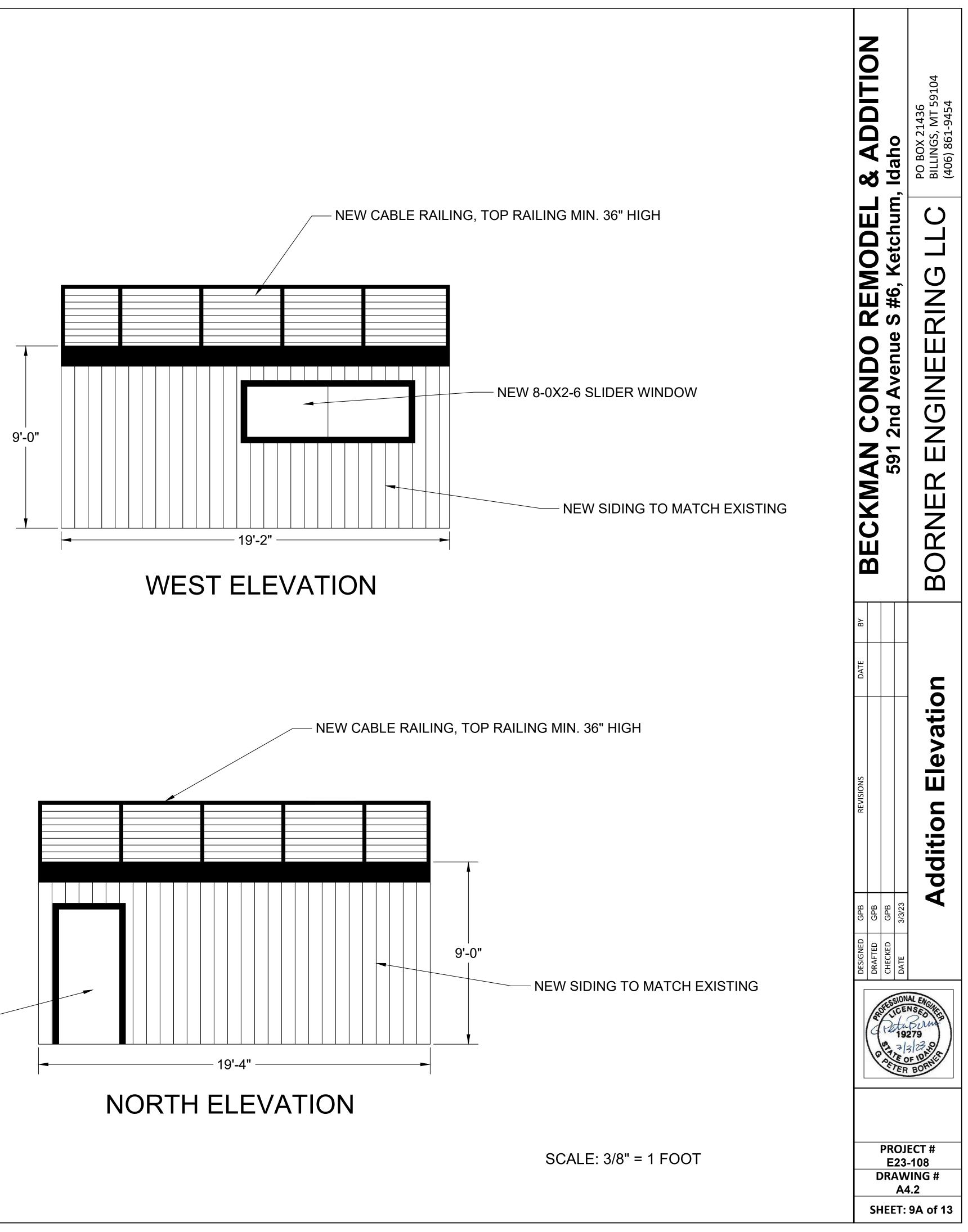

2ND LEVEL PLAN SCALE: 3/8" = 1'-0"


				ROOM FIN	SH SCHEDUL	E
		FLOOR AND CEILING				
NO.	NAME	SQUARE FOOTAGE	FLOOR	BASE	WALLS	CEILING
001	MASTER BEDROOM	300	ENIGINEERED WOOD	MDF PAINTED	5/8" GYPSUM	5/8" GYP
002	MASTER BATH	76	TILE FLOOR, WITH ELECTRIC FLOOR HEAT	MDF PAINTED	5/8" GYPSUM	5/8" GYP
003	MASTER CLOSET	35	CARPET	MDF PAINTED	5/8" GYPSUM	5/8" GYP
004	MASTER SHOWER	12	TILE	MDF PAINTED	5/8" GYPSUM	5/8" GYP
005	HALLWAY	96	ENGINEERED WOOD	MDF PAINTED	5/8" GYPSUM	5/8" GYP
006	GUEST BATHROOM	38	TILE	MDF PAINTED	5/8" GYPSUM	5/8" GYP
007	ΡΑΤΙΟ	316	PAVERS	MDF PAINTED	5/8" GYPSUM	5/8" GYP

OOR SYST NDOW E AIL E STEEL P G SYSTEM FAUCETS,	OST AND RAIL, SEE SEC , SEE SECTION MIRROR			CONSISTENT	ANGLES			591 2nd Avenue S #6, Ketchum, Idaho	BORNER ENGINEERING LLC PO BOX 21436 BILLINGS, MT 59104 (406) 861-9454
ED FF		RIC TO GA	S			Bγ			
						DATE			C
						REVISIONS			2nd Floor Plan
						GPB	GPB	3/3/23	
						DESIGNED	DRAFTED	DATE	
NG GYPSUM	COUNTERTOPS N/A	REMARKS PROVIDE 3/4"OSB To	-&G BELOW FINAL FLOORIN	NG SYSTEM			Star - Star	19	AL ENGINER NSEO BUMA 279 3 23 0 5 10 M LAT
GYPSUM GYPSUM GYPSUM GYPSUM	QUARTZ MDF SHELVING N/A N/A		REQUIRED FOR PLUMBING					<u>.</u>	
GYPSUM GYPSUM	QUARTZ N/A	T&C	G BELOW FINAL FLOORING	SYSTEM					ECT # -108


E23-108 DRAWING # A3.2


NEW 6-8X3-0 DOOR



ING, TOP RAILING MIN. 36" HIGH WINDOW	BECKMAN CONDO REMODEL & ADDITION 591 2nd Avenue S #6, Ketchum, Idaho	BORNER ENGINEERING LLC PO BOX 21436 BILLINGS, MT 59104 (406) 861-9454
G, TOP RAILING MIN. 36" HIGH	REVISIONS DATE BY	Addition Elevation
EXISTING	DESIGNED GPB DRAFTED GPB CHECKED GPB CHECKED GPB DATE 3/3/23	
SCALE: 3/8" = 1 FOOT	PROJI E23- DRAW A4 SHEET:	-108 /ING #

NEW CONSTRUCTION

PO Box 21436 Billings, MT 59104 (208) 315-5060 peter@bornerworks.com

Project Title:
Engineer:Beckman Condominium Remodel & Addition
Peter BornerProject ID:
Project Descr:Peter Borner

eMail : peter@bornerworks.com

Project Information Project File: Beckman.ec6 LIC# : KW-06011326, Build:20.23.2.14 Peter Borner (c) ENERCALC INC 1983-2022 Project Title : Beckman Condominium Remodel & Addition Peter Borner Peter Borner

Description :

I.D. :

Address : 591 2nd Ave. S #6, Ketchum, ID

Project Leader : Peter Borner

Phone : (406) 861-9454

Project Notes

CHESSIONAL ENGINE ROLLICENSEO 19279 CHE DE 23 0 CHE OF IDATION OFTE OF IDATION SETER BORING

Fax :

Wall Footing

LIC# : KW-06011326, Build:20.23.2.14

14

Peter Borner

Project Title: Engineer: Project ID: Project Descr:

Peter Borner

Project File: Beckman.ec6

Beckman Condominium Remodel & Addition

(c) ENERCALC INC 1983-2022

DESCRIPTION: --None--

Code References

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : IBC 2021

General Information

Dimensions				Reinforcing		
				Adjusted Allowable Bearing Pressure	=	1.50 ksf
AutoCalc Fo	AutoCalc Footing Weight as DL:		Yes	when footing is wider than	=	ft
Min. Sliding	Safety Factor	=	1.0:1	Allow. Pressure Increase per foot of width	=	ksf
Min. Overtur	ning Safety Factor	=	1.0:1	Increases based on footing Width		
Min Allow %	Temp Reinf.	=	0.00180	when base footing is below	=	ft
	Bending Reinf.	=		Allow. Pressure Increase per foot of depth	=	ksf
Analysis Settin	iqs			Reference Depth below Surface	=	ft
'	Shear	=	0.750	Increases based on footing Depth		
$_{\odot}$ Values	Flexure	=	0.90			
Concrete De	nsity	=	145.0 pcf	Soil/Concrete Friction Coeff.	=	0.30
Éc : Concret	e Elastic Modulus	=	3,122.0 ksi	Soil Passive Resistance (for Sliding)	=	250.0 pcf
fy : Rebar Yi		=	60.0 ksi	Increase Bearing By Footing Weight	=	No
	e 28 day strength	=	3.0 ksi	Allowable Soil Bearing	=	1.50 ksf
Material Prope	rtios			Soil Design Values		

Footing Width	=	1.50 ft	Footing Thickness	=	12.0 in	Bars along X-X Axis		
Wall Thickness	=	8.0 in	Rebar Centerline to Ec	lge of Co	ncrete	# of Bars in 12" Width =		2
Wall center offset from center of footing	=	0 in	at Bottom of footing =		3.0 in	Reinforcing Bar Size =	#	4

Applied Loads

		D	Lr	L	S	W	Е	н
P : Column Load	=	0.40	0.150	0.150	1.20			k
OB : Overburden	=							ksf
V-x	=							k
V-x M-zz	=							k-ft
Vx applied	=	in a	above top of fo	oting				

Wall Foot	ting							Project F	ile: Beckma	n.ec6
	1326, Build:20.23.2				Peter I	Borner		(c) ENEF	RCALC INC 19	83-2022
								Da		
DESIGN SUI Fa	IVIVIARY	Item			Applied		Capacity	Governing I	sign OK .oad Combi	nation
PASS	n/a	Overturni	ina - 7-7	7	0.0 k	-ft	0.0 k-ft	No Overturning		
PASS	n/a	Sliding -	0	-	0.0 k		0.0 k-n	No Overturning No Sliding		
PASS	n/a	Uplift			0.0 k		0.0 k		lo Uplift	
Ut	ilization Ratio	ltem			Applied		Capacity	Governing I	_oad Combi	nation
PASS	0.8078	Soil Bear	rina		1.212 k	sf	1.50 ksf	•	+D+S	
PASS	0.01022	Z Flexure	•		0.1583 k		15.494 k-ft		+0.50L+1.60	S
PASS	0.002076	Z Flexure	• •		0.03216 k		15.494 k-ft		+0.90D	-
PASS	n/a	1-way Sh	``'	3	0.0 psi		82.158 psi		n/a	
PASS	0.0	1-way Sh			0.0 psi		0.0 psi		n/a	
Detailed Res	sults	-								
Soil Bearing										
Rotation Axis	s & mbination			Gr	ross Allowable	Xecc	Actual Soll B -X	earing Stress +X	Actual / All Rati	
, D Only					1.50 ksf	0.0 in	0.4117 ksf	0.4117 ksf		0.274
, +D+L					1.50 ksf	0.0 in		0.5117 ksf		0.341
, +D+Lr					1.50 ksf	0.0 in	0.5117 ksf	0.5117 ksf		0.341
, +D+S , +D+0.750Lr⋅	±0 750l				1.50 ksf 1.50 ksf	0.0 in 0.0 in	1.212 ksf 0.5617 ksf	1.212 ksf 0.5617 ksf		0.808 0.374
, +D+0.750L+					1.50 ksf	0.0 in	1.087 ksf	1.087 ksf		0.724
, +0.60D					1.50 ksf	0.0 in	0.2470 ksf	0.2470 ksf		0.165
Overturning St	-								Units : k-	ft
Rotation Axis	: R									
Load Co	mbination			Over	turning Moment	I	Resisting Moment	Stability Ratio	Stat	us
	mbination NO Overturning			Over	turning Moment	I	Resisting Moment	Stability Ratio	Stat	us
Footing Has N Sliding Stability Force Applica	mbination NO Overturning y ation Axis					I				
Footing Has N Sliding Stability Force Applica Load Co	mbination NO Overturning y ation Axis mbination				turning Moment		Resisting Moment	Stability Ratio		
Footing Has N Sliding Stability Force Applica	mbination NO Overturning y ation Axis mbination NO Sliding			S	Sliding Force		Resisting Force		tio Stat	
Footing Has N Sliding Stability Force Applica Load Con Footing Has N Footing Flexure	mbination NO Overturning y ation Axis mbination NO Sliding	nation	Mu k-ft	S		As Req'd in^2				
Footing Has N Sliding Stability Force Applica Load Con Footing Has N Footing Flexure Flexure Axis , +1.40D	mbination NO Overturning y ation Axis mbination NO Sliding e			S Which	Sliding Force Tension @ Bot. or Top ?	As Req'd	Resisting Force Gvrn. As	Sliding SafetyRa Actual As	tio Stat Phi*Mn	us
Footing Has N Sliding Stability Force Applica Load Con Footing Has N Footing Flexure Flexure Axis , +1.40D , +1.40D	mbination NO Overturning y ation Axis mbination NO Sliding e & Load Combir	C	k-ft 0.05003 0.05003	Side ? -X +X	Sliding Force Tension @ Bot. or Top ? Bottom Bottom	As Req'd in^2 0.2592 0.2592	Resisting Force Gvrn. As in^2 Min Temp % Min Temp %	Sliding SafetyRa Actual As in^2 0.4 0.4	tio Stat Phi*Mn k-ft 15.494 15.494	us Status Oł
Footing Has N Sliding Stability Force Applica Load Co Footing Has N Footing Flexure Flexure Axis , +1.40D , +1.40D , +1.20D+0.50	mbination NO Overturning y ation Axis mbination NO Sliding e & Load Combin 0Lr+1.60L	C C C	k-ft 0.05003 0.05003 0.06111	Which Side ? -X +X -X	Sliding Force Tension @ Bot. or Top ? Bottom Bottom Bottom	As Req'd in^2 0.2592 0.2592 0.2592	Resisting Force Gvrn. As in^2 Min Temp % Min Temp % Min Temp %	Sliding SafetyRa	tio Stat Phi*Mn k-ft 15.494 15.494 15.494	us Status Oł Oł
Footing Has N Sliding Stability Force Applica Load Co Footing Has N Footing Flexure Flexure Axis , +1.40D , +1.40D , +1.20D+0.50 , +1.20D+0.50	mbination NO Overturning y ation Axis mbination NO Sliding e & Load Combin 0Lr+1.60L 0Lr+1.60L		k-ft).05003).05003).06111).06111	Side ? Side ? -X +X -X +X +X	Sliding Force Tension @ Bot. or Top ? Bottom Bottom Bottom Bottom Bottom	As Req'd in^2 0.2592 0.2592 0.2592 0.2592 0.2592	Resisting Force Gvrn. As in^2 Min Temp % Min Temp % Min Temp % Min Temp %	Sliding SafetyRa Actual As in^2 0.4 0.4 0.4 0.4 0.4 0.4	tio Stat Phi*Mn k-ft 15.494 15.494 15.494 15.494 15.494	us Status Oł Oł Oł
Footing Has N Sliding Stability Force Applica Load Co Footing Has N Footing Flexure Flexure Axis , +1.40D , +1.20D+0.50 , +1.20D+0.50 , +1.20D+1.60	mbination NO Overturning y ation Axis mbination NO Sliding e & Load Combin 0Lr+1.60L 0Lr+1.60L 0Lr+0.50S		k-ft 0.05003 0.05003 0.06111 0.06111 0.09149	Which Side ? -X +X -X +X -X -X	Sliding Force Tension @ Bot. or Top ? Bottom Bottom Bottom Bottom Bottom Bottom	As Req'd in^2 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592	Resisting Force Gvrn. As in^2 Min Temp % Min Temp % Min Temp %	Sliding SafetyRa	tio Stat Phi*Mn k-ft 15.494 15.494 15.494 15.494 15.494 15.494	us Status Ol Ol Ol Ol
Footing Has N Sliding Stability Force Applica Load Co Footing Has N Footing Flexure Flexure Axis , +1.40D , +1.40D , +1.20D+0.50 , +1.20D+0.50	mbination NO Overturning y ation Axis mbination NO Sliding e & Load Combin 0Lr+1.60L 0Lr+1.60L 0Lr+0.50S 0L+0.50S		k-ft).05003).05003).06111).06111	Side ? Side ? -X +X -X +X +X	Sliding Force Tension @ Bot. or Top ? Bottom Bottom Bottom Bottom Bottom	As Req'd in^2 0.2592 0.2592 0.2592 0.2592 0.2592	Resisting Force Gvrn. As in^2 Min Temp % Min Temp % Min Temp % Min Temp %	Sliding SafetyRa Actual As in^2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	tio Stat Phi*Mn k-ft 15.494 15.494 15.494 15.494 15.494	us Status Of Of Of Of Of Of Of
Footing Has N Sliding Stability Force Applica Load Con Footing Has N Footing Flexure Flexure Axis , +1.40D , +1.20D+0.50 , +1.20D+0.50 , +1.20D+0.50 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60	mbination NO Overturning y ation Axis mbination NO Sliding e & Load Combin 0Lr+1.60L 0Lr+1.60L 0Lr+0.50S 0L+0.50S 0L+0.50S 0Lr+0.50L		k-ft 0.05003 0.05003 0.06111 0.06111 0.09149 0.09149 0.06111 0.06111	Side ? Side ? -X +X -X +X -X +X +X -X +X +X +X +X	Sliding Force Tension @ Bot. or Top ? Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom	As Req'd in^2 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592	Resisting Force Gvrn. As in^2 Min Temp % Min Temp % Min Temp % Min Temp % Min Temp % Min Temp % Min Temp %	Sliding SafetyRa Actual As in^2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	tio Stat Phi*Mn k-ft 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494	US Status OI OI OI OI OI OI OI OI
Footing Has N Sliding Stability Force Applica Load Con Footing Has N Footing Flexure Flexure Axis , +1.40D , +1.20D+0.50 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60	mbination NO Overturning y ation Axis mbination NO Sliding e & Load Combin 0Lr+1.60L 0Lr+1.60L 0Lr+0.50S 0L+0.50S 0L+0.50S 0Lr+0.50L 0Lr		k-ft 0.05003 0.05003 0.06111 0.06111 0.09149 0.09149 0.06111 0.06111 0.06111 0.05677	Side ? Side ? -X +X -X +X -X +X -X +X -X -X -X	Sliding Force Tension @ Bot. or Top ? Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom	As Req'd in^2 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592	Resisting Force Gvrn. As in^2 Min Temp % Min Temp %	Sliding SafetyRa Actual As in^2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	tio Stat Phi*Mn k-ft 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494	US Status OI OI OI OI OI OI OI OI OI
Footing Has N Sliding Stability Force Applica Load Co Footing Has N Footing Flexure Flexure Axis , +1.40D , +1.20D+0.50 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60	mbination NO Overturning y ation Axis mbination NO Sliding e & Load Combin 0Lr+1.60L 0Lr+1.60L 0Lr+0.50S 0L+0.50S 0Lr+0.50L 0Lr+0.50L 0Lr+0.50L 0Lr		k-ft 0.05003 0.05003 0.06111 0.06111 0.09149 0.09149 0.06111 0.06111 0.06677 0.05677	Side ? Side ? -X +X -X +X -X +X -X +X -X +X -X +X -X +X -X +X	Sliding Force Tension @ Bot. or Top ? Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom	As Req'd in^2 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592	Resisting Force Gvrn. As in^2 Min Temp % Min Temp %	Sliding SafetyRa	tio Stat Phi*Mn k-ft 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494	US Status Of Of Of Of Of Of Of Of Of Of Of Of Of
Footing Has N Sliding Stability Force Applica Load Co Footing Has N Footing Flexure Flexure Axis , +1.40D , +1.20D+0.50 , +1.20D+1.60 , +1.20D+1.60	mbination NO Overturning y ation Axis mbination NO Sliding e & Load Combin 0Lr+1.60L 0Lr+1.60L 0Lr+0.50S 0L+0.50S 0Lr+0.50L 0Lr+0.50L 0Lr+0.50L 0Lr 0Lr 0Lr		k-ft 0.05003 0.05003 0.06111 0.06111 0.09149 0.09149 0.06111 0.06111 0.06171 0.05677 0.1583	Side ? Side ? -X +X -X +X -X +X -X +X -X +X -X +X -X -X	Sliding Force Tension @ Bot. or Top ? Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom	As Req'd in^2 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592	Resisting Force Gvrn. As in^2 Min Temp % Min Temp %	Sliding SafetyRa Actual As in^2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	tio Stat Phi*Mn k-ft 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494	US Status OI OI OI OI OI OI OI OI OI OI OI OI OI
Footing Has N Sliding Stability Force Applica Load Co Footing Has N Footing Flexure Flexure Axis , +1.40D , +1.40D , +1.20D+0.50 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60	mbination NO Overturning y ation Axis mbination NO Sliding e & Load Combin 0Lr+1.60L 0Lr+1.60L 0Lr+0.50S 0L+0.50S 0L+0.50S 0Lr+0.50L 0Lr 0Lr 0Lr 0Lr 0Lr 0Lr 0Lr 0		k-ft 0.05003 0.05003 0.06111 0.06111 0.09149 0.09149 0.06111 0.06111 0.06677 0.05677	Side ? Side ? -X +X -X +X -X +X -X +X -X +X -X +X -X +X -X +X	Sliding Force Tension @ Bot. or Top ? Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom	As Req'd in^2 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592	Resisting Force Gvrn. As in^2 Min Temp % Min Temp %	Sliding SafetyRa Actual As in^2 0.4	tio Stat Phi*Mn k-ft 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494	US Status OF OF OF OF OF OF OF OF OF OF OF OF OF
Footing Has N Sliding Stability Force Applica Load Col Footing Has N Footing Flexure Flexure Axis , +1.40D , +1.20D+0.56 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+0.55 , +1.20D+0.55 , +1.20D+0.56 , +1.20D+0.56 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60	mbination NO Overturning y ation Axis mbination NO Sliding e & Load Combin 0Lr+1.60L 0Lr+0.50S 0L+0.50S 0Lr+0.50L 0Lr+0.50L 0Lr 0Lr 0Lr 0Lr 0Lr 0Lr 0Lr 0		k-ft).05003).05003).05003).06111).06111).09149).09149).09149).06111).06111).05677 0.1583 0.1583 0.1583 0.154 0.154	Side ? Side ? -X +X -X +X -X +X -X +X -X +X -X +X -X +X -X +X -X +X -X +X -X +X -X +X -X +X -X -X -X -X -X -X -X -X -X -X -X -X -X	Sliding Force Tension @ Bot. or Top ? Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom	As Req'd in^2 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592	Resisting Force Gvrn. As in^2 Min Temp % Min Temp %	Sliding SafetyRa Actual As in^2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	tio Stat Phi*Mn k-ft 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494	us Status OI OI OI OI OI OI OI OI OI OI
Footing Has N Sliding Stability Force Applica Load Col Footing Has N Footing Flexure Flexure Axis , +1.40D , +1.20D+0.56 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+0.50 , +1.20D+0.50 , +1.20D+0.50 , +1.20D+0.50 , +1.20D+0.50 , +1.20D+0.50	mbination NO Overturning y ation Axis mbination NO Sliding e & Load Combin 0Lr+1.60L 0Lr+1.60L 0L+0.50S 0Lr+0.50L 0Lr+0.50L 0Lr+0.50L 0Lr 0Lr+1.60S 0S 0S 0Lr+0.50L		k-ft).05003).05003).06111).06111).09149).09149).06111).06111).05677 0.1583 0.1583 0.1583 0.154 0.154).05156	Side ? Side ? -X +X -X +X -X +X -X +X -X +X -X +X -X +X -X -X -X -X	Sliding Force Tension @ Bot. or Top ? Bottom	As Req'd in^2 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592	Resisting Force Gvrn. As in^2 Min Temp % Min Temp %	Sliding SafetyRa Actual As in^2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	tio Stat Phi*Mn k-ft 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494	US Status OI OI OI OI OI OI OI OI OI OI
Footing Has N Sliding Stability Force Applica Load Col Footing Has N Footing Flexure Flexure Axis , +1.40D , +1.20D+0.50 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+0.50 , +1.20D+0.	mbination NO Overturning y ation Axis mbination NO Sliding e & Load Combin 0Lr+1.60L 0Lr+1.60L 0Lr+0.50S 0L+0.50S 0Lr+0.50L 0Lr 0Lr 0Lr 0Lr 0Lr 0Lr 0Lr 0		k-ft).05003).05003).06111).06111).09149).09149).06111).06111).066171).05677 0.1583 0.1583 0.1584 0.1544).05156	Side ? Side ? -X +X -X +X -X +X -X +X -X +X -X +X -X +X -X +X -X +X -X +X +X -X +X +X -X +X -X +X -X -X +X -X -X -X -X -X -X -X -X -X -X -X -X -X	Sliding Force Tension @ Bot. or Top ? Bottom	As Req'd in^2 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592 0.2592	Resisting Force Gvrn. As in^2 Min Temp % Min Temp %	Sliding SafetyRa Actual As in^2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	tio Stat Phi*Mn k-ft 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494 15.494	US Status OI OI OI OI OI OI OI OI OI OI
Footing Has N Sliding Stability Force Applica Load Co Footing Has N Footing Flexure Flexure Axis , +1.40D , +1.20D+0.50 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+0.50 , +1.20D+0.5	mbination NO Overturning y ation Axis mbination NO Sliding e & Load Combin 0Lr+1.60L 0Lr+0.50S 0Lr+0.50S 0Lr+0.50L 0Lr+0.50L 0Lr+0.50L 0Lr+0.50L 0Lr+0.50L 0Lr+0.50L 0S 0Lr+0.50L 0Lr+0.50L 0Lr+0.50L 0Lr+0.50L 0Lr+0.50L 0Lr+0.50L 0Lr+0.50S		k-ft).05003).05003).06111).06111).06111).09149).061111).061111).066171).05677 0.1583 0.1583 0.154 0.1544).05156).05156).08194	Side ? Side ? -X +X -X +X -X +X -X +X -X +X -X +X -X +X -X +X -X -X -X -X -X -X -X -X -X -X -X -X -X	Sliding Force Tension @ Bot. or Top ? Bottom	As Req'd in^2 0.2592	Resisting Force Gvrn. As in^2 Min Temp % Min Temp %	Sliding SafetyRa	tio Stat Phi*Mn k-ft 15.494	US Status OI OI OI OI OI OI OI OI OI OI
Footing Has N Sliding Stability Force Applica Load Co Footing Has N Footing Flexure Flexure Axis , +1.40D , +1.20D+0.50 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+0.50 , +1.20D+0.5	mbination NO Overturning y ation Axis mbination NO Sliding e & Load Combin 0Lr+1.60L 0Lr+1.60L 0Lr+0.50S 0Lr+0.50S 0Lr+0.50L 0Lr+0.50L 0Lr+0.50L 0Lr+0.50L 0Lr+0.50L 0Lr+0.50L 0Lr+0.50L 0Lr+0.50L 0Lr+0.50L 0Lr+0.50S 0Lr+0.50S 0Lr+0.50S		k-ft).05003).05003).06111).06111).06111).06111).06111).06111).06677 0.1583 0.1583 0.1583 0.154 0.05156).05156).05156).08194).08194	Side ? Side ? -X +X -X +X -X +X -X +X -X +X -X +X -X +X -X +X -X +X -X +X -X +X -X +X -X +X -X +X -X +X -X -X -X -X -X -X -X -X -X -X -X -X -X	Sliding Force Tension @ Bot. or Top ? Bottom	As Req'd in^2 0.2592	Resisting Force Gvrn. As in^2 Min Temp % Min Temp %	Sliding SafetyRa Actual As in^2 0.4	tio Stat Phi*Mn k-ft 15.494	US Status OI OI OI OI OI OI OI OI OI OI
Footing Has N Sliding Stability Force Applica Load Co Footing Has N Footing Flexure Flexure Axis , +1.40D , +1.20D+0.50 , +1.20D+1.60 , +1.20D+0.50 , +1.20D+0.50 , +1.20D+0.50 , +1.20D+0.50	mbination NO Overturning y ation Axis mbination NO Sliding e & Load Combin 0Lr+1.60L 0Lr+1.60L 0Lr+0.50S 0L+0.50S 0Lr+0.50L 0Lr 0Lr 0Lr 0Lr 0Lr 0Lr 0Lr 0		k-ft).05003).05003).06111).06111).06111).09149).061111).061111).066171).05677 0.1583 0.1583 0.154 0.1544).05156).05156).08194	Side ? Side ? -X +X -X +X -X +X -X +X -X +X -X +X -X +X -X +X -X -X -X -X -X -X -X -X -X -X -X -X -X	Sliding Force Tension @ Bot. or Top ? Bottom	As Req'd in^2 0.2592	Resisting Force Gvrn. As in^2 Min Temp % Min Temp %	Sliding SafetyRa	tio Stat Phi*Mn k-ft 15.494	us Status Oł Oł
Footing Has N Sliding Stability Force Applica Load Co Footing Has N Footing Flexure Flexure Axis , +1.40D , +1.20D+0.50 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+1.60 , +1.20D+0.50 , +1.20D+0.50 , +1.20D+0.50 , +1.20D+0.50 , +1.20D+0.50 , +1.20D+0.50 , +1.20D+0.50 , +1.20D+0.50 , +1.20D+0.50 , +1.20D+0.50	mbination NO Overturning y ation Axis mbination NO Sliding e & Load Combin 0Lr+1.60L 0Lr+1.60L 0Lr+0.50S 0L+0.50S 0Lr+0.50L 0Lr 0Lr 0Lr 0Lr 0Lr 0Lr 0Lr 0		k-ft).05003).05003).06111).06111).06111).09149).09149).09149).06111).06111).05677 0.1583 0.1583 0.1583 0.154 0.05156).05156).05156).05156).05156	Side ? Side ? -X +X -X +X -X +X -X +X -X +X -X +X -X +X -X +X -X +X -X -X -X -X -X -X -X -X -X -X -X -X -X	Sliding Force Tension @ Bot. or Top ? Bottom	As Req'd in^2 0.2592	Resisting Force Gvrn. As in^2 Min Temp % Min Temp %	Sliding SafetyRa Actual As in^2 0.4	tio Stat Phi*Mn k-ft 15.494	US Status OF OF OF OF OF OF OF OF OF OF OF OF OF

Project Title: Engineer: Project ID: Project Descr: Beckman Condominium Remodel & Addition Peter Borner

Wall Footing

LIC# : KW-06011326, Build:20.23.2.14

DESCRIPTION: --None--

One Way Shear

Peter Borner

Project File: Beckman.ec6

(c) ENERCALC INC 1983-2022

ne Way Shear						ι	Jnits : k
Load Combination	Vu @ -X	Vu @	+X	Vu:Max	Phi Vn	Vu / Phi*Vn	Status
+1.40D	0	psi	0 psi	0 psi	82.158 psi	0	OK
+1.20D+0.50Lr+1.60L	0	psi	0 psi	0 psi	82.158 psi	0	OK
+1.20D+1.60L+0.50S	0	psi	0 psi	0 psi	82.158 psi	0	OK
+1.20D+1.60Lr+0.50L	0	psi	0 psi	0 psi	82.158 psi	0	OK
+1.20D+1.60Lr	0	psi	0 psi	0 psi	82.158 psi	0	OK
+1.20D+0.50L+1.60S	0	psi	0 psi	0 psi	82.158 psi	0	OK
+1.20D+1.60S	0	psi	0 psi	0 psi	82.158 psi	0	OK
+1.20D+0.50Lr+0.50L	0	psi	0 psi	0 psi	82.158 psi	0	OK
+1.20D+0.50L+0.50S	0	psi	0 psi	0 psi	82.158 psi	0	OK
+1.20D+0.50L+0.70S	0	psi	0 psi	0 psi	82.158 psi	0	OK
+0.90D	0	psi	0 psi	0 psi	82.158 psi	0	OK

General Footing

LIC# : KW-06011326, Build:20.23.2.14

Peter Borner

Project File: Beckman.ec6

(c) ENERCALC INC 1983-2022

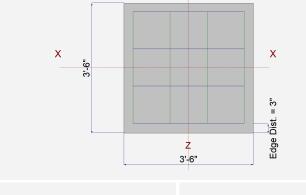
DESCRIPTION: --None--

Code References

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : IBC 2021

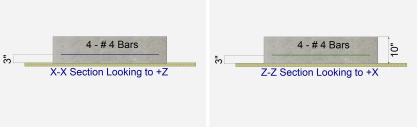
General Information

Material Properties			
f'c : Concrete 28 day strength	=	3	.0 ksi
fy : Rebar Yield	60.0 ksi		
Ec : Concrete Elastic Modulus	=	3,122	.0 ksi
Concrete Density	=	145	.0 pcf
$_{m{\Phi}}$ Values Flexure	=	0.9	0
Shear	=	0.75	50
Analysis Settings			
Min Steel % Bending Reinf.		=	
Min Allow % Temp Reinf.		=	0.00180
Min. Overturning Safety Factor		=	1.0 : 1
Min. Sliding Safety Factor		=	1.0:1
Add Ftg Wt for Soil Pressure		:	Yes
Use ftg wt for stability, moments & sh	ears	:	Yes
Add Pedestal Wt for Soil Pressure		:	No
Use Pedestal wt for stability, mom & s	shear	:	No


Soil Design Values Allowable Soil Bearing Soil Density Increase Bearing By Footing Weight Soil Passive Resistance (for Sliding) Soil/Concrete Friction Coeff.	= = =	1.50 ksf 110.0 pcf No 250.0 pcf
Soll/Concrete Friction Coeff.	=	0.30
Increases based on footing Depth Footing base depth below soil surface Allow press. increase per foot of depth when footing base is below	= = =	ft ksf ft
Increases based on footing plan dimension Allowable pressure increase per foot of dept		
when max. length or width is greater than	=	ksf
	=	ft

Ζ

Dimensions


Width parallel to X-X Axis	=	3.50 ft
Length parallel to Z-Z Axis	=	3.50 ft
Footing Thickness	=	10.0 in

Pedestal dimensions		
px : parallel to X-X Axis	=	in
pz : parallel to Z-Z Axis	=	in
Height	=	in
Rebar Centerline to Edge of	Concrete	
at Bottom of footing	=	3.0 in

Reinforcing

Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size	= =	#	4.0 4
Bars parallel to Z-Z Axis Number of Bars Reinforcing Bar Size Bandwidth Distribution Ch Direction Requiring Closer	•	# 5.4.4.2)	4 4
# Bars required within zone # Bars required on each sid			n/a n/a n/a

Applied Loads

		D	Lr	L	S	W	E	н
P : Column Load OB : Overburden	=	2.50	1.50		12.0			k ksf
M-xx M-zz	=							k-ft k-ft
V-x	=							k
V-z	=							k

General Footing

LIC# : KW-06011326, Build:20.23.2.14

DESCRIPTION: --None--

DESIGN SUMMARY

Project File: Beckman.ec6

(c) ENERCALC INC 1983-2022

DESIGN S	UMMARY				Design OK
	Min. Ratio	ltem	Applied	Capacity	Governing Load Combination
PASS	0.870	Soil Bearing	1.305 ksf	1.50 ksf	+D+S about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.3982	Z Flexure (+X)	2.775 k-ft/ft	6.970 k-ft/ft	+1.20D+1.60S
PASS	0.3982	Z Flexure (-X)	2.775 k-ft/ft	6.970 k-ft/ft	+1.20D+1.60S
PASS	0.3982	X Flexure (+Z)	2.775 k-ft/ft	6.970 k-ft/ft	+1.20D+1.60S
PASS	0.3982	X Flexure (-Z)	2.775 k-ft/ft	6.970 k-ft/ft	+1.20D+1.60S
PASS	0.3033	1-way Shear (+X)	24.918 psi	82.158 psi	+1.20D+1.60S
PASS	0.3033	1-way Shear (-X)	24.918 psi	82.158 psi	+1.20D+1.60S
PASS	0.3033	1-way Shear (+Z)	24.918 psi	82.158 psi	+1.20D+1.60S
PASS	0.3033	1-way Shear (-Z)	24.918 psi	82.158 psi	+1.20D+1.60S
PASS	0.6717	2-way Punching	110.366 psi	164.317 psi	+1.20D+1.60S
Detailed R	esults				

Peter Borner

Soil Bearing

Rotation Axis &		Xec		Actu	al Soil Bearing	Stress @ Loc	ation	Actual / Allow
Load Combination	Gross Allowa	ble	(in)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, D Only	1.50	n	/a 0.0	0.3249	0.3249	n/a	n/a	0.217
X-X, +D+Lr	1.50	n	/a 0.0	0.4474	0.4474	n/a	n/a	0.298
X-X, +D+S	1.50	n	/a 0.0	1.305	1.305	n/a	n/a	0.870
X-X, +D+0.750Lr	1.50	n	/a 0.0	0.4168	0.4168	n/a	n/a	0.278
X-X, +D+0.750S	1.50	n	/a 0.0	1.060	1.060	n/a	n/a	0.707
X-X, +0.60D	1.50		/a 0.0	0.1949	0.1949	n/a	n/a	0.130
Z-Z, D Only	1.50		.0 n/a	n/a	n/a	0.3249	0.3249	0.217
Z-Z, +D+Lr	1.50	0	.0 n/a	n/a	n/a	0.4474	0.4474	0.298
Z-Z, +D+S	1.50		.0 n/a		n/a	1.305	1.305	0.870
Z-Z, +D+0.750Lr	1.50	0	.0 n/a	n/a	n/a	0.4168	0.4168	0.278
Z-Z, +D+0.750S	1.50	0	.0 n/a	n/a	n/a	1.060	1.060	0.707
Z-Z, +0.60D	1.50	0	.0 n/a	n/a	n/a	0.1949	0.1949	0.130
Overturning Stability								
Rotation Axis & Load Combination		Overtur	ning Mome	nt	Resisting Mon	nent Stat	oility Ratio	Status
Footing Has NO Overturning								
Sliding Stability							A	ll units k
Fores Application Axis								
Force Application Axis		Slidi	ing Force		Resisting Fo	rce Stat	oility Ratio	Statue
Load Combination		Slidi	ing Force		Resisting Fo	rce Stat	bility Ratio	Status
••		Slidi	ing Force		Resisting Fo	rce Stat	oility Ratio	Status
Load Combination Footing Has NO Sliding	n Mu		Tension	As Req'd	Gvrn. As	Actual As	Phi*Mn	Status
Load Combination Footing Has NO Sliding Footing Flexure Flexure Axis & Load Combinatio	n k-ft	Side	Tension Surface	in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft	Status
Load Combination Footing Has NO Sliding Footing Flexure Flexure Axis & Load Combinatio X-X, +1.40D	0.4375	Side +Z	Tension Surface Bottom	in^2 0.2160	Gvrn. As in^2 AsMin	Actual As in^2 0.2286	Phi*Mn k-ft 6.970	Status
Load Combination Footing Has NO Sliding Footing Flexure Flexure Axis & Load Combinatio X-X, +1.40D X-X, +1.40D	k-ft 0.4375 0.4375	Side +Z -Z	Tension Surface Bottom Bottom	in^2 0.2160 0.2160	Gvrn. As in^2 AsMin AsMin	Actual As in^2 0.2286 0.2286	Phi*Mn k-ft 6.970 6.970	Status OK OK
Load Combination Footing Has NO Sliding Footing Flexure Flexure Axis & Load Combinatio X-X, +1.40D X-X, +1.40D X-X, +1.20D+0.50Lr	k-ft 0.4375 0.4375 0.4688	Side +Z -Z +Z	Tension Surface Bottom Bottom Bottom	in^2 0.2160 0.2160 0.2160 0.2160	Gvrn. As in^2 AsMin AsMin AsMin	Actual As in^2 0.2286 0.2286 0.2286	Phi*Mn k-ft 6.970 6.970 6.970	Status OK OK OK
Load Combination Footing Has NO Sliding Footing Flexure Flexure Axis & Load Combinatio X-X, +1.40D X-X, +1.40D X-X, +1.20D+0.50Lr X-X, +1.20D+0.50Lr X-X, +1.20D+0.50Lr	k-ft 0.4375 0.4375 0.4688 0.4688	Side +Z -Z +Z -Z	Tension Surface Bottom Bottom Bottom Bottom	in^2 0.2160 0.2160 0.2160 0.2160	Gvrn. As in^2 AsMin AsMin AsMin AsMin	Actual As in^2 0.2286 0.2286 0.2286 0.2286	Phi*Mn k-ft 6.970 6.970 6.970 6.970 6.970	Status OK OK OK OK
Load Combination Footing Has NO Sliding Footing Flexure Flexure Axis & Load Combinatio X-X, +1.40D X-X, +1.40D X-X, +1.20D+0.50Lr X-X, +1.20D+0.50Lr X-X, +1.20D+0.50Lr X-X, +1.20D+0.50S	k-ft 0.4375 0.4375 0.4688 0.4688 1.125	Side +Z -Z +Z -Z +Z	Tension Surface Bottom Bottom Bottom Bottom Bottom	in^2 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160	Gvrn. As in^2 AsMin AsMin AsMin AsMin AsMin	Actual As in^2 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286	Phi*Mn k-ft 6.970 6.970 6.970 6.970 6.970 6.970	Status OK OK OK OK OK
Load Combination Footing Has NO Sliding Flexure Axis & Load Combinatio X-X, +1.40D X-X, +1.40D X-X, +1.20D+0.50Lr X-X, +1.20D+0.50Lr X-X, +1.20D+0.50S X-X, +1.20D+0.50S	k-ft 0.4375 0.4375 0.4688 0.4688 1.125 1.125	Side +Z -Z +Z -Z +Z -Z	Tension Surface Bottom Bottom Bottom Bottom Bottom Bottom	in^2 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160	Gvrn. As in^2 AsMin AsMin AsMin AsMin AsMin AsMin	Actual As in^2 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286	Phi*Mn k-ft 6.970 6.970 6.970 6.970 6.970 6.970 6.970	Status OK OK OK OK OK
Load Combination Footing Has NO Sliding Footing Flexure Flexure Axis & Load Combinatio X-X, +1.40D X-X, +1.40D X-X, +1.20D+0.50Lr X-X, +1.20D+0.50Lr X-X, +1.20D+0.50S X-X, +1.20D+0.50S X-X, +1.20D+0.50S X-X, +1.20D+1.60Lr	n k-ft 0.4375 0.4375 0.4688 0.4688 1.125 1.125 0.6750	Side +Z -Z +Z -Z +Z -Z +Z	Tension Surface Bottom Bottom Bottom Bottom Bottom Bottom Bottom	in^2 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160	Gvrn. As in^2 AsMin AsMin AsMin AsMin AsMin AsMin AsMin	Actual As in^2 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286	Phi*Mn k-ft 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970	Status OK OK OK OK OK OK
Load Combination Footing Has NO Sliding footing Flexure Flexure Axis & Load Combinatio X-X, +1.40D X-X, +1.40D X-X, +1.20D+0.50Lr X-X, +1.20D+0.50Lr X-X, +1.20D+0.50S X-X, +1.20D+0.50S X-X, +1.20D+1.60Lr X-X, +1.20D+1.60Lr	n k-ft 0.4375 0.4375 0.4688 0.4688 1.125 1.125 0.6750 0.6750	Side +Z -Z +Z -Z +Z -Z +Z -Z	Tension Surface Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom	in^2 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160	Gvrn. As in^2 AsMin AsMin AsMin AsMin AsMin AsMin AsMin AsMin	Actual As in^2 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286	Phi*Mn k-ft 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970	Status OK OK OK OK OK OK OK
Load Combination Footing Has NO Sliding Flexure Axis & Load Combinatio X-X, +1.40D X-X, +1.40D X-X, +1.20D+0.50Lr X-X, +1.20D+0.50Lr X-X, +1.20D+0.50S X-X, +1.20D+0.50S X-X, +1.20D+1.60Lr X-X, +1.20D+1.60Lr X-X, +1.20D+1.60Lr X-X, +1.20D+1.60S	n k-ft 0.4375 0.4375 0.4688 0.4688 1.125 1.125 0.6750 0.6750 0.6750 2.775	Side +Z -Z +Z -Z +Z -Z +Z -Z +Z +Z	Tension Surface Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom	in^2 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160	Gvrn. As in^2 AsMin AsMin AsMin AsMin AsMin AsMin AsMin AsMin AsMin	Actual As in^2 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286	Phi*Mn k-ft 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970	Status OK OK OK OK OK OK OK
Load Combination Footing Has NO Sliding Footing Flexure Flexure Axis & Load Combinatio X-X, +1.40D X-X, +1.40D X-X, +1.20D+0.50Lr X-X, +1.20D+0.50Lr X-X, +1.20D+0.50S X-X, +1.20D+0.50S X-X, +1.20D+1.60Lr X-X, +1.20D+1.60Lr X-X, +1.20D+1.60S X-X, +1.20D+1.60S X-X, +1.20D+1.60S	h k-ft 0.4375 0.4375 0.4688 0.4688 1.125 1.125 0.6750 0.6750 0.6750 2.775 2.775	Side +Z -Z +Z -Z +Z -Z +Z -Z +Z -Z	Tension Surface Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom	in^2 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160	Gvrn. As in^2 AsMin AsMin AsMin AsMin AsMin AsMin AsMin AsMin AsMin AsMin	Actual As in^2 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286	Phi*Mn k-ft 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970	Status OK OK OK OK OK OK OK OK
Load Combination Footing Has NO Sliding Footing Flexure Flexure Axis & Load Combinatio X-X, +1.40D X-X, +1.40D X-X, +1.20D+0.50Lr X-X, +1.20D+0.50Lr X-X, +1.20D+0.50S X-X, +1.20D+0.50S X-X, +1.20D+1.60Lr X-X, +1.20D+1.60Lr X-X, +1.20D+1.60S X-X, +1.20D+1.60S X-X, +1.20D+0.70S	h k-ft 0.4375 0.4375 0.4688 0.4688 1.125 1.125 0.6750 0.6750 2.775 2.775 1.425	Side +Z -Z +Z -Z +Z -Z +Z -Z +Z +Z -Z +Z	Tension Surface Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom	in^2 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160	Gvrn. As in^2 AsMin AsMin AsMin AsMin AsMin AsMin AsMin AsMin AsMin AsMin AsMin	Actual As in^2 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286	Phi*Mn k-ft 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970	Status OK OK OK OK OK OK OK OK OK
Load Combination Footing Has NO Sliding Footing Flexure Flexure Axis & Load Combinatio X-X, +1.40D X-X, +1.40D X-X, +1.20D+0.50Lr X-X, +1.20D+0.50Lr X-X, +1.20D+0.50S X-X, +1.20D+0.50S X-X, +1.20D+1.60Lr X-X, +1.20D+1.60Lr X-X, +1.20D+1.60S X-X, +1.20D+1.60S X-X, +1.20D+1.60S	h k-ft 0.4375 0.4375 0.4688 0.4688 1.125 1.125 0.6750 0.6750 0.6750 2.775 2.775	Side +Z -Z +Z -Z +Z -Z +Z -Z +Z -Z +Z -Z	Tension Surface Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom Bottom	in^2 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160 0.2160	Gvrn. As in^2 AsMin AsMin AsMin AsMin AsMin AsMin AsMin AsMin AsMin AsMin	Actual As in^2 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286 0.2286	Phi*Mn k-ft 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970	Status OK OK OK OK OK OK OK OK

General Footing

LIC# : KW-06011326, Build:20.23.2.14

DESCRIPTION: --None--

Peter Borner

Project File: Beckman.ec6

(c) ENERCALC INC 1983-2022

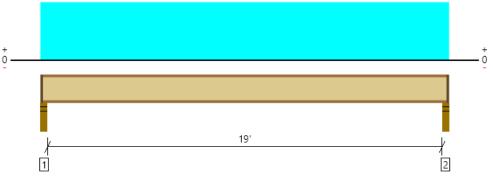
Footing Flexure

Flexure Axis & Load Combination	n Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. A in^2	s Actual in^2	As Phi* k-		Status
X-X, +0.90D	0.2813	-Z	Bottom	0.2160	AsMin	0.228	6 6	6.970	ок
Z-Z, +1.40D	0.4375	-X	Bottom	0.2160	AsMin	0.228	66	6.970	OK
Z-Z, +1.40D	0.4375	+X	Bottom	0.2160	AsMin	0.228	66	6.970	OK
Z-Z, +1.20D+0.50Lr	0.4688	-X	Bottom	0.2160	AsMin	0.228	66	6.970	OK
Z-Z, +1.20D+0.50Lr	0.4688	+X	Bottom	0.2160	AsMin	0.228	66	6.970	OK
Z-Z, +1.20D+0.50S	1.125	-X	Bottom	0.2160	AsMin	0.228	66	6.970	OK
Z-Z, +1.20D+0.50S	1.125	+X	Bottom	0.2160	AsMin	0.228	66	6.970	OK
Z-Z, +1.20D+1.60Lr	0.6750	-X	Bottom	0.2160	AsMin	0.228	66	6.970	ΟΚ
Z-Z, +1.20D+1.60Lr	0.6750	+X	Bottom	0.2160	AsMin	0.228	66	6.970	ΟΚ
Z-Z, +1.20D+1.60S	2.775	-X	Bottom	0.2160	AsMin	0.228	66	6.970	ок
Z-Z, +1.20D+1.60S	2.775	+X	Bottom	0.2160	AsMin	0.228	66	6.970	ок
Z-Z, +1.20D+0.70S	1.425	-X	Bottom	0.2160	AsMin	0.228	66	6.970	ок
Z-Z, +1.20D+0.70S	1.425	+X	Bottom	0.2160	AsMin	0.228	66	6.970	OK
Z-Z, +0.90D	0.2813	-X	Bottom	0.2160	AsMin	0.228	66	6.970	ок
Z-Z, +0.90D	0.2813	+X	Bottom	0.2160	AsMin	0.228	66	6.970	OK
One Way Shear									
Load Combination	Vu @ -X	Vu @	+X Vu	@ -Z Vu	@ +Z	Vu:Max	Phi Vn Vu	ı / Phi*Vn	Status
+1.40D	3.93 p	si	3.93 psi	3.93 psi	3.93 psi	3.93 psi	82.16 psi	0.05	OK
+1.20D+0.50Lr	4.21 p	si	4.21 psi	4.21 psi	4.21 psi	4.21 psi	82.16 psi	0.05	OK
+1.20D+0.50S	10.10 p	si	10.10 psi	10.10 psi	10.10 psi	10.10 psi	82.16 psi	0.12	OK
+1.20D+1.60Lr	6.06 p	si	6.06 psi	6.06 psi	6.06 psi	6.06 psi	82.16 psi	0.07	OK
+1.20D+1.60S	24.92 p	si	24.92 psi	24.92 psi	24.92 psi	24.92 psi	82.16 psi	0.30	OK
+1.20D+0.70S	12.80 p		12.80 psi	12.80 psi	12.80 psi	12.80 psi	82.16 psi	0.16	OK
+0.90D	2.53 p	si	2.53 psi	2.53 psi	2.53 psi	2.53 psi	82.16 psi	0.03	ок
Two-Way "Punching" Shear	2.001							All units	; k
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn			Status
+1.40D		17.4	10 psi	164.32	psi	0.1059			OK
+1.20D+0.50Lr			64 psi	164.32		0.1135			OK
+1.20D+0.50S			74 psi	164.32		0.2723			OK
+1.20D+1.60Lr			35 psi	164.32		0.1634			OK
+1.20D+1.60S			37 psi	164.32		0.6717			OK
+1.20D+0.70S			67 psi	164.32		0.3449			OK
+0.90D			9 psi	164.32		0.06807			OK

Beckmann

Level					
Member Name	Results	Current Solution	Comments		
Floor: Joist	Passed	1 piece(s) 11 7/8" TJI® 210 @ 16" OC			
Roof: Flush Beam	Passed	4 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL			
Roof: Joist	Passed	1 piece(s) 9 1/2" TJI ® 210 @ 16" OC			

Job Notes


3/1/2023 2:28:46 PM UTC ForteWEB v3.5 File Name: Beckmann

MEMBER REPORT

Level, Floor: Joist 1 piece(s) 11 7/8" TJI ® 210 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	672 @ 2 1/2"	1134 (2.25")	Passed (59%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	659 @ 3 1/2"	1655	Passed (40%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3184 @ 9' 9 1/2"	3795	Passed (84%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.462 @ 9' 9 1/2"	0.479	Passed (L/498)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.601 @ 9' 9 1/2"	0.958	Passed (L/383)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	34	30	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.75"	157	522	679	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	2.25"	1.75"	157	522	679	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments		
Top Edge (Lu)	4' o/c			
Bottom Edge (Lu)	19' 5" o/c			
The state and such and under Maximum Allowable burging and then				

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 19' 7"	16"	12.0	40.0	Default Load

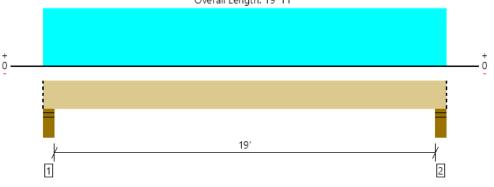
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator . G Peter Borner PE Borner Engineering, LLC (406) 861-9454 peter@bornerworks.com

Job Notes



MEMBER REPORT

Level, Roof: Flush Beam 4 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

Overall Length: 19' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	14043 @ 4"	16363 (5.50")	Passed (86%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	11516 @ 1' 9 1/2"	24472	Passed (47%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	65319 @ 9' 11 1/2"	71562	Passed (91%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.791 @ 9' 11 1/2"	0.962	Passed (L/292)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.979 @ 9' 11 1/2"	1.283	Passed (L/236)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Member should be side-loaded from both sides of the member or braced to prevent rotation.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	4.72"	2690	1892	11353	14043	Blocking
2 - Stud wall - SPF	5.50"	5.50"	4.72"	2690	1892	11353	14043	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.								

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 9" o/c	
Bottom Edge (Lu)	19' 11" o/c	

•Maximum allowable bracing intervals based on applied load.

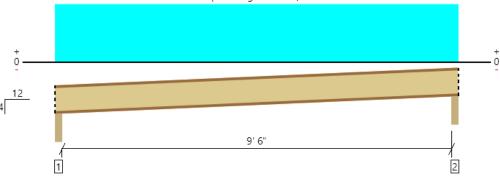
			Dead	Roof Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 19' 11"	N/A	32.7			
1 - Uniform (PSF)	0 to 19' 11" (Front)	9' 6"	25.0	20.0	120.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
G Peter Borner PE Borner Engineering, LLC (406) 861-9454 peter@bornerworks.com	



MEMBER REPORT

Level, Roof: Joist 1 piece(s) 9 1/2" TJI ® 210 @ 16" OC

Sloped Length: 10' 7 9/16"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs) 984 @ 2 1/2" 1679 (3.50") Passed (59%) 1.15 1.0 D + 1.0 S (All Spans) Shear (lbs) 927 @ 3 1/2" 1530 Passed (61%) 1.15 1.0 D + 1.0 S (All Spans) Moment (Ft-lbs) 2279 @ 5' 1/2" 3450 Passed (66%) 1.15 1.0 D + 1.0 S (All Spans) Live Load Defl. (in) 0.230 @ 5' 1/2" 0.509 Passed (L/532) 1.0 D + 1.0 S (All Spans) 1.0 D + 1.0 S (All Spans) Total Load Defl. (in) 0.280 @ 5' 1/2" 0.679 Passed (L/436)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 4/12

Member Length : 10' 10 11/16"

PASSED

• Deflection criteria: LL (L/240) and TL (L/180).

· Allowed moment does not reflect the adjustment for the beam stability factor.

able	Required	Dead	D (1)			1
		Deau	Roof Live	Snow	Factored	Accessories
0"	1.75"	177	134	807	984	Blocking
0"	1.75"	177	134	807	984	Blocking
(0"	0" 1.75"	0" 1.75" 177	0" 1.75" 177 134	0" 1.75" 177 134 807	

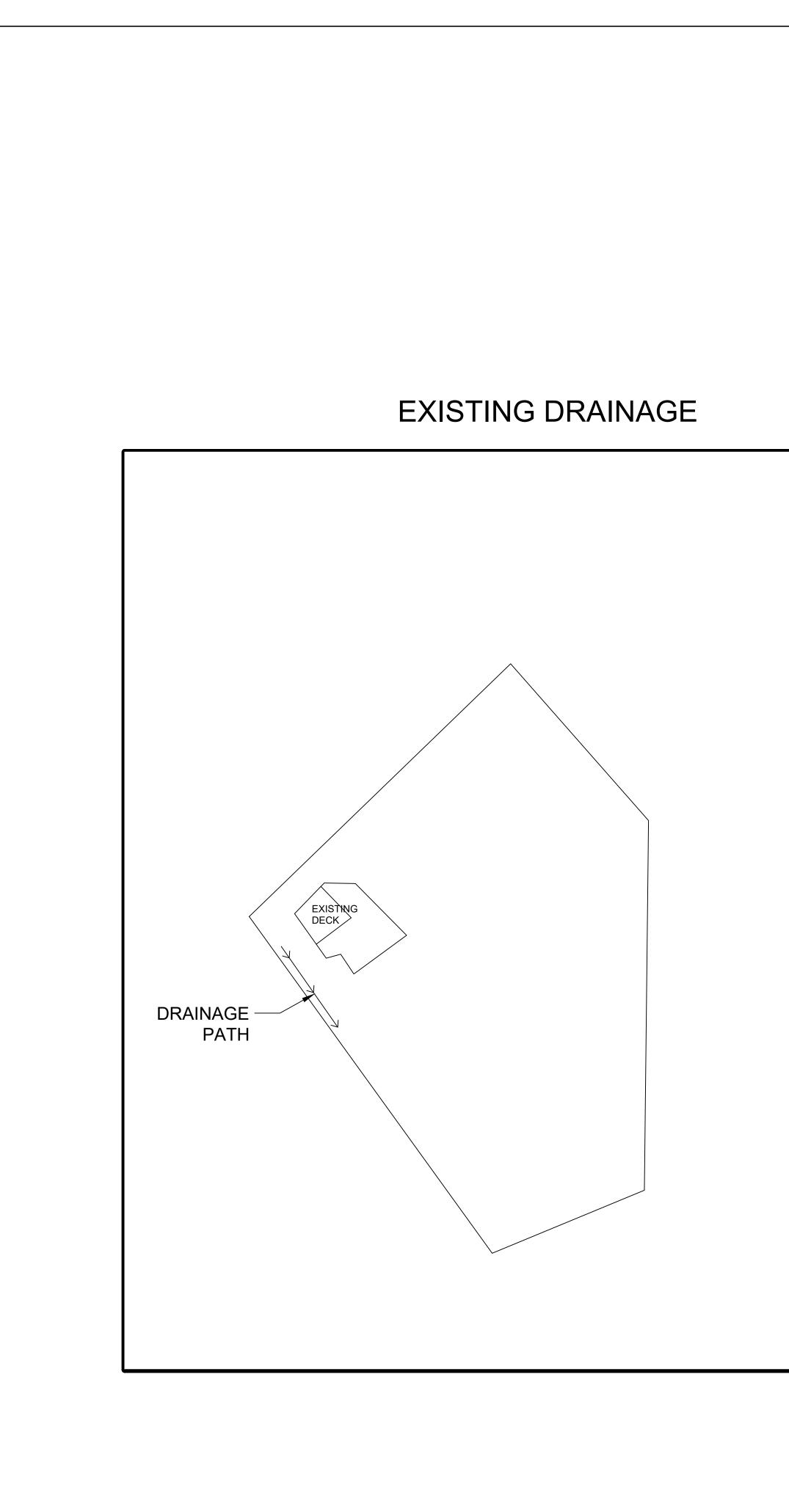
• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

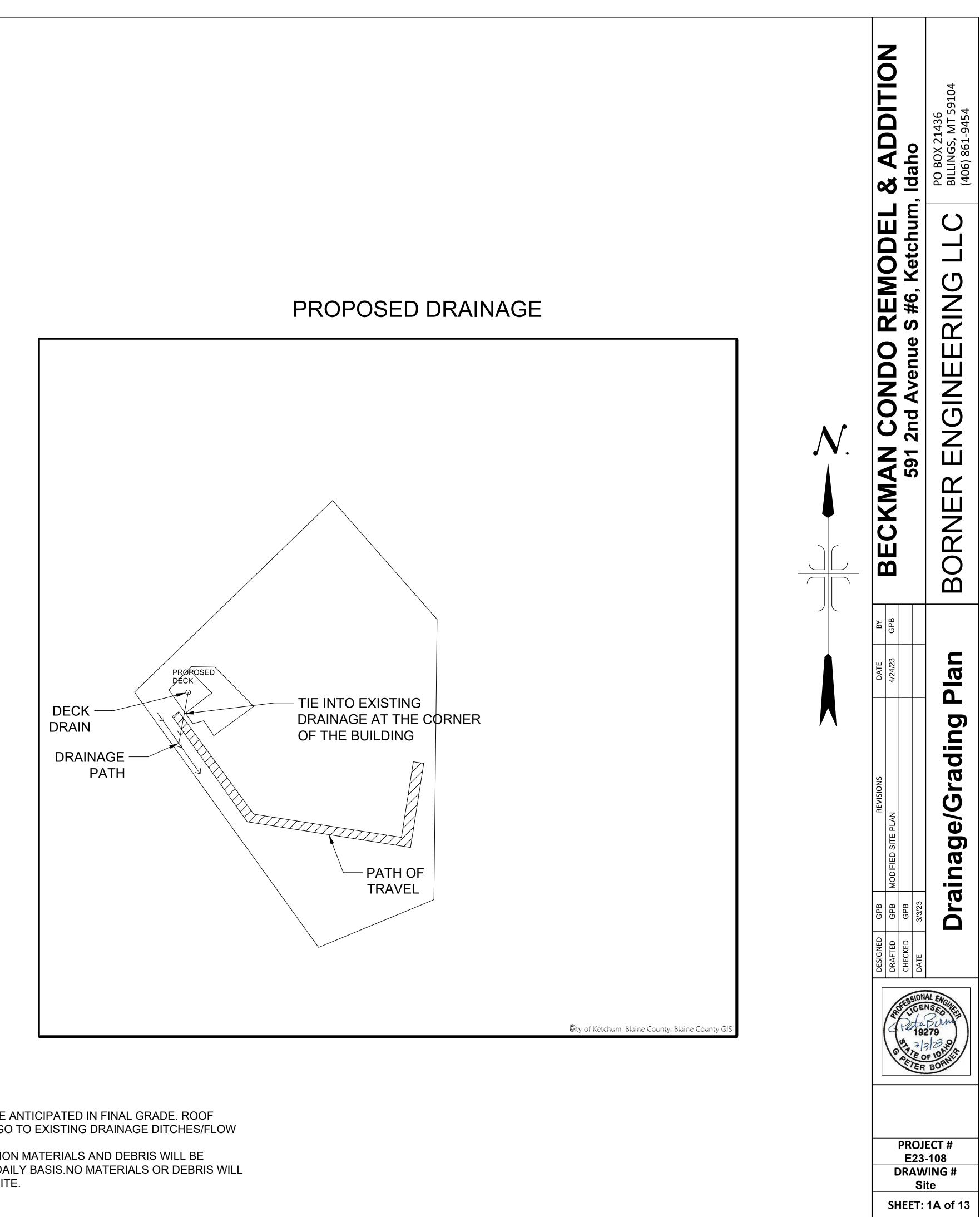
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 3" o/c	
Bottom Edge (Lu)	10' 8" o/c	

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Snow	
Vertical Load	Location	Spacing	(0.90)	(non-snow: 1.25)	(1.15)	Comments
1 - Uniform (PSF)	0 to 10' 1"	16"	25.0	20.0	120.0	Default Load


Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
G Peter Borner PE Borner Engineering, LLC (406) 861-9454 peter@bornerworks.com	

NOTES:

- 1. NO CHANGES ARE ANTICIPATED IN FINAL GRADE. ROOF DRAINAGE WILL GO TO EXISTING DRAINAGE DITCHES/FLOW PATHS.
- 2. ALL CONSTRUCTION MATERIALS AND DEBRIS WILL BE MANAGES ON A DAILY BASIS.NO MATERIALS OR DEBRIS WILL BE SOTRED ON-SITE.

GENERAL NOTES:

The following structural specifications shall apply to the drawings and be assumed as typical unless noted otherwise in the drawings. The specifications will cover information that may or may not be noted on the drawings.

All dimensions and elevations shall be verified by the Contractor to coordinate with the architectural drawings and the existing conditions, prior to the start of construction. Any discrepancies shall be reported to the Engineer for clarification.

All details, notes and specifications shall be verified by the Contractor to coordinate with the architectural drawings and other working drawings. Any discrepancies shall be reported to the Engineer for clarification prior to proceeding with any work or fabrication.

Any omission of various elements shall be approved by Engineer.

All bracing and shoring shall be provided and designed by the General Contractor as required to support all loads that may be imposed on the structure for as long as required for safety and until all structural elements are complete.

Substitution of any materials or products specified in the drawings shall be submitted to the Engineer for approval prior to installation.

The contractor shall provide shop drawings to the Engineer for review prior to fabrication and/or erection of Manufactured Wood Trusses and structural Steel. During and after construction the contractor and/or owner shall keep loads on the structure at or

below the design loads noted below. Holes, notching or other penetrations through structural members shall not be permitted without Engineer approval. The Contractor shall submit size and location of all penetrations to structural

members to the Engineer for approval, prior to commencing installation. Prequalified holes in wood i—joists are permitted per the manufacturers recommendations, without the Engineers approval. The General Contractor shall be responsible for safety and protection within and adjacent to the job site.

Observation visits by Engineer shall not be construed as construction supervision, inspection and/or construction approval.

The Contractor shall notify Engineer at the completion of framing for a site visit.

DESIGN SPECIFICATIONS:

BUILDING CODE Design, construction, and inspection shall conform to the International Building Code, (IBC), 2018 Edition and Local Codes that may be applicable.

<u>DESIGN LOADS</u> At all times, the General Contractor and Owner shall keep the loads on the structure within the limits of the design load criteria.

DESIGN ROOF LOADS Live Load (Snow) Pg=120PSF Ce=1.0 Ct=1.0(warm roof) Pf =100 PSF Dead Load = 25 PSF

Wood Load Duration Factor = 1.15DESIGN FLOOR LOADS Live Load = 40 PSDead Load = 12 PSF

TERRACE LOADS Snow load =100 PSF Live load = 65 PSFDead load = 35 PSFWIND LOAD DATA

Basic Wind Speed (3 sec. gust) = 105 MPH Importance Factor (Iw) = 1Building Category = II Risk Category = II Exposure Category = B

SEISMIC LOAD DATA Seismic Use Group = II Importance Factor (Is) = 1Risk Category = II Sds = 0.58Sd1 = 0.28Site Class = D (assume Seismic design category = D Response Modification Coefficient R = 6.5 Wood shear walls Seismic Weights (W) = Dead Loads + 35% Snow Load ASCE7-16 Equivalent Lateral Force Procedure

SOIL/FOUNDATIONS:

Geotechnical Engineer should be hired to asses the existing soil conditions, due to possible uncontrolled fill.

Design soil bearing pressure assumed to be 2000psf.

Site preparation, excavation, and drainage per others.

All foundations shall bear on original, undisturbed, firm, drained, granular soil free of organic material. If soil is disturbed, compact soil in maximum 6" deep lifts to 95% maximum dry density per ASTM D1557-00.

Contractor to notify Engineer if soil conditions are contrary to the assumed design conditions which may require a lower assumed soil bearing pressure such as clays, silts, organic, or other problems such as ground water.

Footings shall not be placed in water or frozen ground.

Excavation for any purpose shall not remove lateral support from any foundation without approved underpinning or protection against settlement or lateral translation or adjacent foundations.

CONCRETE: Properties:

Structural concrete for walls piers and footings: Minimum 28 day compressive strength: 3000 psi Minimum air entrainment: 6% minimum air Maximum aggregate size: 3/4" Cement: Type II

Concrete for garage and exterior slabs: Minimum 28 day compressive strength: 4000 psi Minimum air entrainment: 3% Maximum aggregate size: 3/4"

Form work, Measuring, mixing, transporting and placing shall comply with ACI 318-14, and the ACI Manual of Concrete Practice

Water shall not be added to the concrete mixture on site.

All concrete stripping and protection shall conform to the specifications, drawings, ACI 318-14 and ACI Manual of Concrete Practice.

Reinforcing steel, anchors and other embedded items shall be tied to ensure proper embedment and location is maintained during concrete pour.

ACI Cold Weather Standards shall be utilized to protect and heat concrete materials when air temperature is less than 40 degrees F. Placement shall comply with ACI 306R recommendations. All concrete materials, reinforcement and embeds shall be free from frost.

CONCRETE WALLS

Reinforce concrete walls as follows, unless specified otherwise in the drawings: Provide dowels from footing to wall to match vertical reinforcement size, spacing and location. Provide dowel/vertical bar at all corners and wall ends. Embed dowels 48 bar diameters into wall and footing. If footing depth is inadequate for embedment length, provide standard 90-degree hook and embed into footing to a depth 3" clear of bottom face of footing. Provide full length lap splice of vertical reinforcement to dowels.

Provide corner bars with 2'-0" long legs to match horizontal reinforcement size, spacing and location unless otherwise noted in drawings. Lap splice horizontal steel full length with corner bars.

Reinforcing steel shall be continuous through all cold joints. Provide minimum of (2) – #5 around perimeter of all openings. Extend reinforcing a minimum 3'-0"

past opening edges. Stem, basement and retaining walls shall not be backfilled until all floors are framed and sheathed,

basement slabs poured and cured 7 days and wall concrete strength meets specified compressive strength.

Provide adequate drainage behind walls as required to prevent standing water behind walls. REINFORCING STEEL

#4 and larger bars shall conform to ASTM A615, grade 60.

#3 bars shall conform to ASTM A615, grade 40

Welded Wire Fabric shall conform to ASTM A185, grade 60

Reinforcing steel to be fabricated and placed in accordance with ACI 315 and ACI 318. All rebar splices in concrete and masonry shall be lapped 36 bar diameters and 48 bar diameters

respectively unless otherwise noted. Welded Wire Fabric shall be lapped one mesh tie.

Reinforcement and deformed bar anchors to be welded shall be A706 weldable or prior approved equal. Welding of rebar to be approved by Engineer. Welding shall conform to AWS D1.4 standards.

All bars shall be securely tied in place, prior to pouring concrete.

ANCHORS: ANCHOR BOLTS

Anchor bolts shall be ASTM A307, with a minimum 7" embedment depth. Anchor bolts shall be of the size and spacing specified in the plans, with a minimum of 5/8"ø X 10" A.B. at 48"o.c. with washer PL1/4x3x3 at concrete walls and 5/8" \emptyset X 8" A.B. at 6'-0"o.c. at pony wall footings. Anchor bolts shall be placed with in 1'-0'' from wall ends, 6'' for corners in concrete walls, and a minimum of (2) bolts per wall.

Hold down anchors, base plate anchors and other such embeds shall be accurately located. Exact dimensions shall be known by the contractor prior to pouring of the concrete. Contractor shall rdinate dimensions for hold down anchor locations with r architectural dimensions, window/dooi rough opening dimensions, and Simpson hold down dimensions.

Substitution of epoxy anchors is not acceptable unless approved by the engineer for the specific application.

EPOXY ANCHORS Epoxy anchors shall be Simpson SET for base material temperature 40 degrees or higher, Simpson AT for lower temperatures. Install per manufacturers instructions, drill hole to manufacturers specified diameter and depth, remove dust from hole with oil free compressed air. Clean with nylon brush and blow out remaining dust. Fill hole with adhesive per instructions, avoiding air pockets. Anchor must be clean and oil free and not disturbed during cure time. Other epoxy anchor systems may be substituted with Engineers approval. Periodic special inspection required for epoxy anchors per IBC section 1707.3.

Epoxy anchors installed to support sustained tension loads shall be installed by certified adhesive anchor installer.

WOOD

Conventional Light Framing construction shall conform to IBC section 2308, unless noted otherwise. All framing fastening shall be in accordance with IBC section 2304.10 unless otherwise noted on the drawings.

Minimum header shall be (3)-2X8 unless otherwise noted in drawings.

Minimum header post shall be (2)-2X6 bearing studs plus king stud each end unless otherwise

Typical beam pocket at beam bearing locations shall consist of full beam width 2X6 bearing trimmers and 2X6 grabber stud each side. Where 2X6 grabber studs are not possible, provide Simpson TS22 or ST6224 steel strap attached equally to beam and bearing stud.

Provide minimum 1-1/4" thick solid blocking below all bearing walls. Provide minimum 1-1/4" thick solid rim board at perimeter of all floors.

Provide full height blocking between joists at all floor and roof bearing walls and above all shear walls.

Provide solid blocking in floor space below all posts and trimmers from above. Where "I" joists interrupt blocking, provide joist web stiffeners and blocking per manufacturers recommendations. Typical wall construction to consist of 2X6 studs @ 16"o.c..

Where wall heights exceed 13'-0", wall construction to consist of 1-1/2"X5-1/2" LVL studs at 16"o.c..

Balloon frame all walls, wall studs shall not be discontinuous between floors/roof diaphragms. SAWN STRUCTURAL LUMBER

Structural lumber shall conform to the latest edition of the West Coast Lumber Inspection Bureau (WCLIB) or Western Wood Products Association (WWPA) grading rules for the specified sizes and grades listed below.

2X, 3X, 4X Douglas Fir-Larch No.2 Douglas Fir-Larch No.1 6X and larger Douglas Fir-Select Structural 2X and larger S.S.

Wood bearing on, or installed within 1" of concrete or masonry shall be pressure treated with and approved preservative. <u>LAMINATED VENEER LUMBER (LVL)</u>

Laminated Veneer Lumber shall conform to the minimum allowable design properties listed below. LVL material to be of solid sections. Substitution of multiple piece sections requires Engineer prior approval.

Multiple piece sections shall not be substituted for solid sections without prior Engineer approval. Where multiple piece LVL sections are specified in drawings or approved, nail two ply and three ply LVL sections with (3) rows 16d common at 12"o.c. each ply. See drawings or contact Engineer for bolting for (4) ply or greater sections.

LVL	Minimum	Allowable	Design	Properties:

Fb =	2600psi
Fv =	285psi
Fc (parallel) =	2500psi
Fc (perpendicular)=	750psi
E =	2.000.000psi

LVL lumber shall not be used outside of the building envelope, unless treated and rated for exterior use, verify with Engineer.

GLUED-LAMINATED TIMBER Structural Glued-Laminated Timber shall conform to the AITC 117-01 Combination DF/DF 24F-V4 unless noted otherwise in drawings. Enclosed or wrapped glued-laminated timbers to be industrial grade finish. Exposed glued-laminated timbers to be architectural grade, verify finish with architect.

All Glued-Laminated Timber to have zero camber unless otherwise noted on drawings. Fabrication shall be in accordance with AITC 117-01. Provide wet use adhesives. Maximum moisture content shall be 15%.

Install Glued Laminated Timber beams with "TOP SIDE" up as designated on beam.

Glued Laminated timbers used outside of the building envelope shall be treated and rated for exterior use. MANUFACTURED WOOD JOISTS

Manufactured wood "I" joists, to be manufactured by Redbuilt, or Trus Joist Corporation or Boise Cascade, and to be of the type and spacing as specified in the drawings. Joists shall be erected, installed and braced per manufacturer's specifications. Provide blocking

stiffeners, bearing details and connections per manufacturer. Other manufactured wood joists may be substituted with prior Engineer approval.

All holes must be cut within joist web and meet manufacturer's requirements.

PLYWOOD SHEATHING All plywood sheathing shall be APA rated exposure 1 plywood with thickness, veneer grades and span ratings as noted herein or in drawings.

Plywood at roof and floors shall be laid with face grain perpendicular to supports and end joints staggered at 4'-0'' o.c.. Provide 1/8'' space at all panel edges.

Nail roof sheathing with 8d galvanized box (0.113X 2 1/2")or 8d ring shank(0.113X2 1/2), provide boundary nail spacing at 6"o.c. to blocking or joist over exterior walls, shear walls and drag struts, provide field nail spacing at 12" o.c., at interior panel edges and to all framing unless otherwise noted on drawinas.

Glue floor sheathing and nail with 8d galvanized box or 8d ring shank, provide boundary nailing at 6"o.c. to blocking or joists over exterior walls, shear walls and drag struts, provide field nail spacing at 12" o.c. interior panel edges and to all framing unless otherwise noted.

Unless otherwise noted in drawings and shear wall schedule, nail APA rated wall panel edges and boundaries with 8d galvanized box (0.113 X 2 1/2")at 6"o.c., and 12"o.c. intermediate. Block and edge nail all horizontal panel edges at designated shear walls. Also provide edge nailing to top and bottom plates.

Roof Sheathina: 5/8" CDX Structural 1 or equivalent, minimum (40/20) span rating.

Floor Sheathing:

3/4" CDX T&G minimum (48/24) span rating U.N.O.

Exterior Wall Sheathing

15/32" CDX minimum (24/0) span rating unless otherwise noted. 7/16" Oriented Strand Board with the same span rating may be substituted for exterior wall sheathing.

WOOD FASTENERS , LAGS AND PREFABRICATED CONNECTIONS FOR WOOD

Unless otherwise noted in drawings or hardware supplier specification, all nails shall be box or galvanized box. Substitution of staples for nails only with Engineer prior approval.

Wood bolts and lags shall conform to ASTM A307 grade unless otherwise noted. Provide mild steel plate washers at all bolt heads and nuts bearing against wood.

Metal connectors specified in drawings shall be manufactured by the Simpson Strong Tie Company and installed per their specifications. Other manufacturers may be considered where load capacity and dimensions are equal or better. All substitutions must be submitted to the Engineer for review.

Provide Zmax or HDG coating where connectors/fasteners are in contact with treated wood, dissimilar metals or where installed outside of the building envelope. Provide the maximum nailing pattern for all metal connectors, except Coils straps to the top of wood

I—joist Nail or screw substitutions, other than manufacturers specified, must have Engineer prior approval.

Drill holes for bolts and lag screws with a bit 1/16" larger than the specified bolt diameter.

Provide cut washers under bolt head typical.

Lag bolts shall be installed by turning with a wrench.

8d box: 0.113 X 2 1/2" 8d common: 0.131 X 2 1/2" 8d ring shank: 0.113 X 2 1/2" 10d framing nail: 0.131 X 3" 10d common: 0.148 X 3" 10d ring shank: 0.120 X 3" 16d box: 0.135 X 3 1/2 16d common: 0.162 X 3 1/2"

	ems shall or to fabr	be subm	itted to the engineer. The shop drawing: erections of all structural steel items sh				
All structural steel, fabrication, painting, and erection shall comply with AISC Manual of Steel Construction including the Code of Standard Practice and the IBC 2015 edition.							
All steel with exposed to exterior conc corrosion.	itions, or	1" or clos	ser to grade shall be treated to resist				
All wide flange sections shall conform All plates, angles, and channels to cor All structural steel tubing to conform All structural round HSS shall conform All structural pipe shall conform to AS Use ASTM A325 bolts for all steel to	form to to ASTM to ASTM STM A53 (ASTM Á36 A500 grac A501 gra Grade B Fy	yield stress = 36 ksi. le C yield stress = 50 ksi. de C yield stress = 46 ksi. y=35				
Joints Using ASTM A325 or A490 Bolts used. Provide carbonized washers betw	s. Direct een turne a Class	tension ir d element A contact	nce with AISC Specifications For Structure adicators or turn of the nut method may and steel. Connections indicated as slip surface preparation and bolts tightened indicators.	/ be p			
All welding shall be performed in acco in AWS D1.1:2000 Structural Welding C			ng Procedure Specification (WPS) as requ 112 code.	ired			
			es with a Charpy—V—Notch (CVN) of 20 the parameters established by the filler				
Welder shall be certified by AWS stand certification shall be submitted to the							
			moment frame connections shall comply c Provisions of Steel Buildings, and IBC 2				
All complete penetration groove welds testing. Testing to be provided by the		nt connect	ions shall be 100% tested by ultra-sonic				
Holes in structural steel may be made	2	5					
rating and architectural finish with the	Architect		Standard Practice, Chapter 6. Verify fire				
Quality Control and Quality Assurance the "Minimum Requirements for Inspec <u>STATEMENT OF SPECIAL INSPECTION</u>			y the fabricator and erector to comply w teel Buildings" AISC 360 section N5.	ith			
by the Owner for all the items identifi also as noted in the drawings and sp 3. Special inspection shall be enforce 4. The names and credentials of the for approval. The special inspector sk inspect the particular type of construct 5. Duties of the Special Inspector: a. The Special Inspector shall re Schedule for conformance with the ap currently adopted IBC. b. The Special Inspector shall fu Engineering, the Contractor, the Own frequently as required by the Building immediate attention of the Contractor and the Building Official. c. Once corrections have been re final signed report to the Building Offic the best of the Special Inspector's kn	sting sha ed in the ecification d by the Special i nall be ap ction or o eview all w proved co mish spe er and th Official. for corre nade by f cial statir owledge, i	I be provi Statemen s, unless Building conspectors proved by peration r vork listed nstruction cial inspect e Building all items ection, and the Control og that th n conform	official. shall be submitted to the Building Official the building official to be qualified to equiring special inspection. in the Statement of Special Inspection plans and specifications and the stion reports to the Liv Jensen Official on a weekly basis, or more not in compliance shall be brought to the d if uncorrected to Liv Jensen Engineering actor, the Special Inspector shall submit of e work requiring special inspection was, the ance with the approved construction	ie g			
	ontractor: b—contrac	tor respor	anship provisions of the adopted IBC. nsible main wind or seismic force resistin lity to the Owner and the Building Officia				
 the "Statement of Special Inspections" b. The Contractor shall notify the inspection at least on working day (24 c. All work requiring special inspectations observed by the Special Inspector. 7. Please see the "Special Inspection specific items requiring special inspect inspection inspections shall not be conducted provide observations of the constructions. 8. The special inspections shall be provide observations. 	ement of he respons f hours m bection sh Schedule ions and d by Liv on for gen rovided at	the species sible Species all remain " for the structural lensen Eng the owne stion per se	al inspection requirements contain within fal Inspector that work is ready of before such inspection is required. accessible and exposed until it has been types, extents and frequency of the testes as part of this project. gineering. Liv Jensen Engineering will only bliance with the construction documents. ers expense. AISC Seismic Provisions Chapter J, shop				
SPECIAL INSPECTION Areas requiring special inspection:	Freque	ency					
	Continuous GEOTECHN		Comments EER FOR REQUIREMENTS				
Verify adequate material below footings Excavation to proper depth and		х	Prior to placement of concrete.				
materials Classification and testing of fill		x x	Prior to placement of compacted fill or concrete. Check classification and gradations at each lift, but not less than once for each 10,000sf of				
Werify Proper fill materials, lift thicknesses and in-place densities	x		surface area.				
Verify Properly prepared site and subgrade CONCRETE CONSTRUCTION	(IBC 17		Prior to placement of concrete.				
Reinforcing steel placement Embedded bolts or plates		55.07 SUI	PPORTING LIGHT FRAME CONSTRUCTION Prior to placement of concrete.				
Verify required design mix Concrete placement/sampling			Prior to placement of concrete. Includes sampling for air, slump, strength and				
Inspect formwork			temperature techniques Verify shape, location and member dimensions	-			
Post installed anchors			In accordance with approved ICC-ES Report. Periodic inspection allowed if state in ES Report.				
STRUCTURAL STEEL CONSTRUCTION (IBC 1705.2, 1705.11, 1705.12)							

Shop and erection drawings required per AISC

Seismic Provision chapter I, submitted for Engineer's approval prior to fabrication

Verify materials, installation and detailing of

SDPWS

elements of the seismic resisting system, including

shear wall and diaphragm nailing and blocking,

comply with approved plans and IBC 2308 and

STRUCTURAL STEEL CONSTRUCTION (IBC 1705.2, 1705.11, 1705.12) QUALITY INSURANCE PER AISC SEISMIC PROVISIONS Shop and erection drawings required per AISC Seismic Provision chapter I

Structural steel is not part of the lateral resisting system, no special inspection required

STRUCTURAL WOOD (IBC 1705.11.2) Nailing, bolting, anchoring and other fastening of components within the seismic force resisting system, including shear walls, wood diaphragms, drag struts, and hold downs

Ð ZĂ 7 0 σ C N Ζ 0 ΣX 7 C Ш m ď Ο Ω U GPB GPB GPB KED TED DESIG DRAF CHEC DATE

O

E

ADD

ah

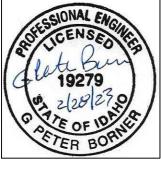
J

(0

U

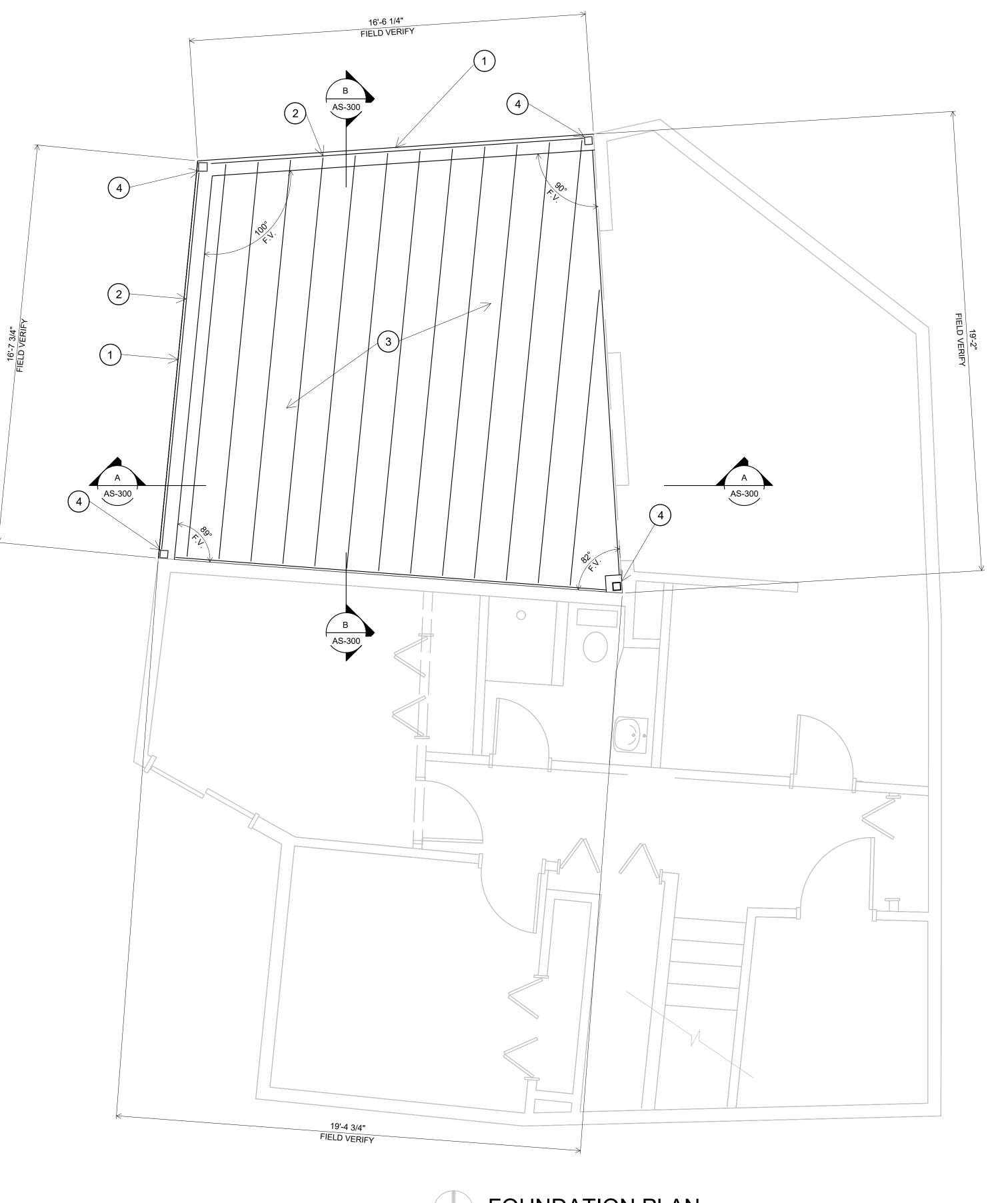
5

∞ ∞

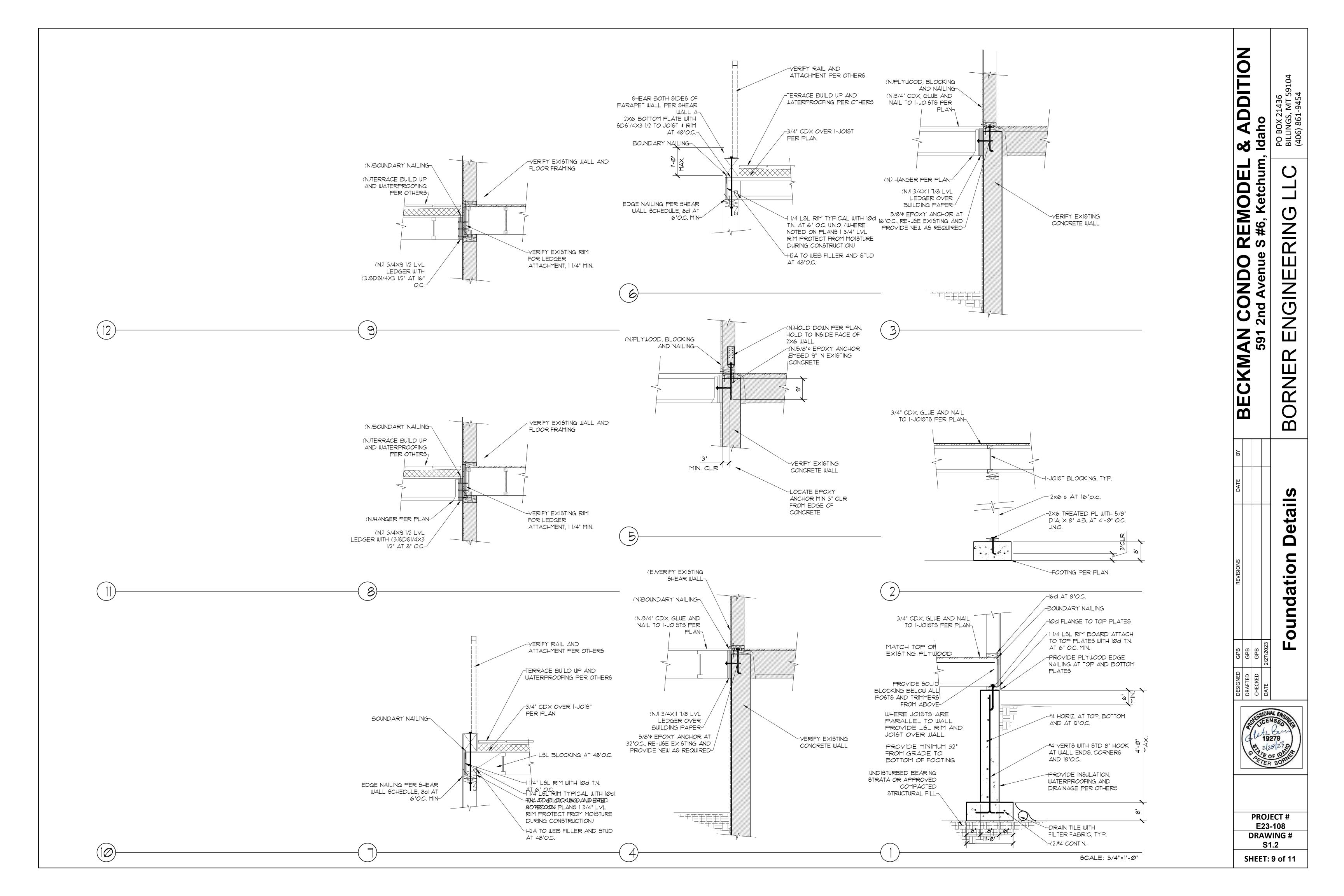

(etch

Σ×

Ш #


C v

0


PROJECT # E23-108 Notes

DRAWING # SHEET: 2 of

SHEET KEY NOTES 1. 8-INCH STEM WALL EXTENSION 2. 1-1/8X11-7/8 RIM BOARD 3. 11-7/8 TJI @ 16" O.C. 4. HSS 4X4X 1/4COLUMN SUPPORTING 2ND FLO

BORNER ENGINEERING LLC PO BOX 21436 BILLINGS, MT 59104 (406) 861-9454		591 2nd Avenue S #6 Ketchum Idaho		
Foundation Plan				REVISIONS DATE BY
AL ENGINER DE 279 DE 279 DE 270 DE UDINIER BORNIER	192 2(20	ere or	DRAFTED	DESIGNED GPB
ECT # -108 /ING # .1	23-	E2 RA		

HEADER SC MARK | HEADER OPTIONS HDR-1 6X8, (3)2X8, HDR-2 5 1/4X9 1/2 LVL

AT ENDS OF ALL HEADERS, PROVIDE MINIMUM (2)2x6 TRIMMERS AND (1) 2 x 6 KING STUD WITH 16d's AT 9"o.c., U.N.O. (NOTE-1 TRIMMER IS ACCEPTABLE FOR HDR-1, BUT 2 ARE RECOMMENDED FOR BEST CONSTRUCTION PRACTICES)

FRAMING NOTES

(N): NEW STRUCTURAL MEMBER (E): EXITING STRUCTURAL MEMBER VERIFY

IF ACTUAL EXISTING CONDITIONS ARE DIFFERENT THAN ASSUMED IN THE DRAWINGS CONTACT ENGINEER

ALTERATION AND OMISSIONS TO THE PLANS AND DETAILS MUST BE APPROVED BY THE ENGINEER

TRUSS SHOP DRAWINGS MUST BE SUBMITTED TO THE ENGINEER FOR REVIEW PRIOR TO FABRICATION

T-#: DENOTES NUMBER OF 2X6 TRIMMERS K- #: NUMBER OF 2X6 KING STUD WITH 10d AT 9" O.C. TO TRIMMERS

WALL LEGEND

 $\Box \equiv \Box$ EXISTING WALL TO BE REMOVED

SHEAR WALL SCHEDULE

	WALL SHEETING	G EDGE NAILING FIELD NAILING PANEL EDGES					
	15/32 CDX	8d's AT 6" o.c.	2x6 BLOCKING ALL EDGES				
B	15/32 CDX	8d's AT 4" o.c.	8d's AT 12" o.c.	2x6 BLOCKING ALL EDGES			
Ċ	15/32 CDX	8d's AT 3" o.c.	8d's AT 12" o.c.	2x6 BLOCKING ALL EDGES			

NOTES:

USE 8d COMMON (0.131X2 1/2") OR GALV. BOX NAILS(0.113X2 1/2")

FLAT 2x6 BLOCKING MAY BE USED AT HORIZ. ABUTTING PANEL EDGES WHERE SHEAR IS ONLY ON ONE SIDE

X'-Y" DENOTES MINIMUM WALL LENGTH, <u>CONTACT ENGINEER</u> FOR REVISED ENGINEERING IF WALL LENGTH IS LESS THAN NOTED IF 7/16" OSB IS SUBSTITUTED AND STUDS ARE SPACED AT 24" O.C. PROVIDE

8d'S AT 6" O.C. FIELD NAILING

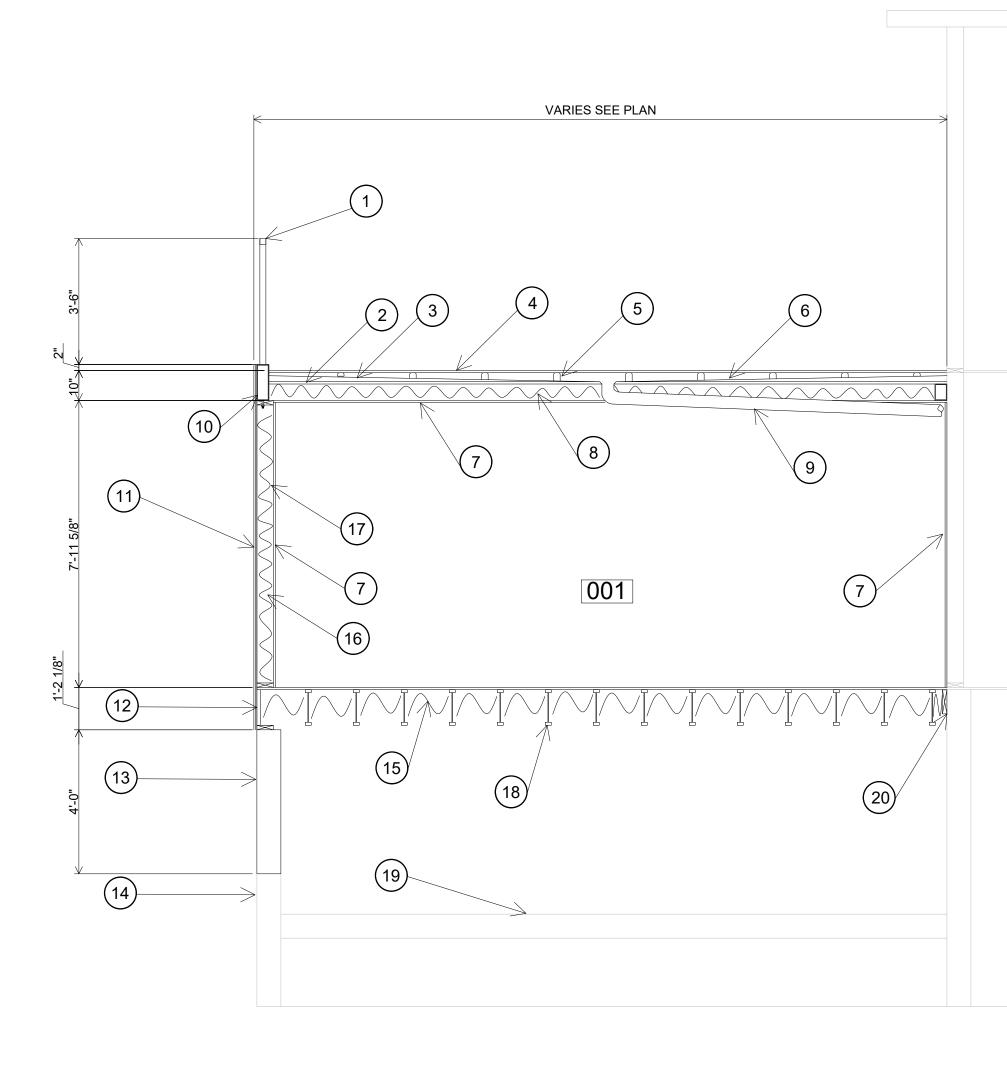
DO NOT PENETRATE SHEAR, PLATES OR RIM AT SHEAR WALLS

FRAMING OR BLOCKING PLATES

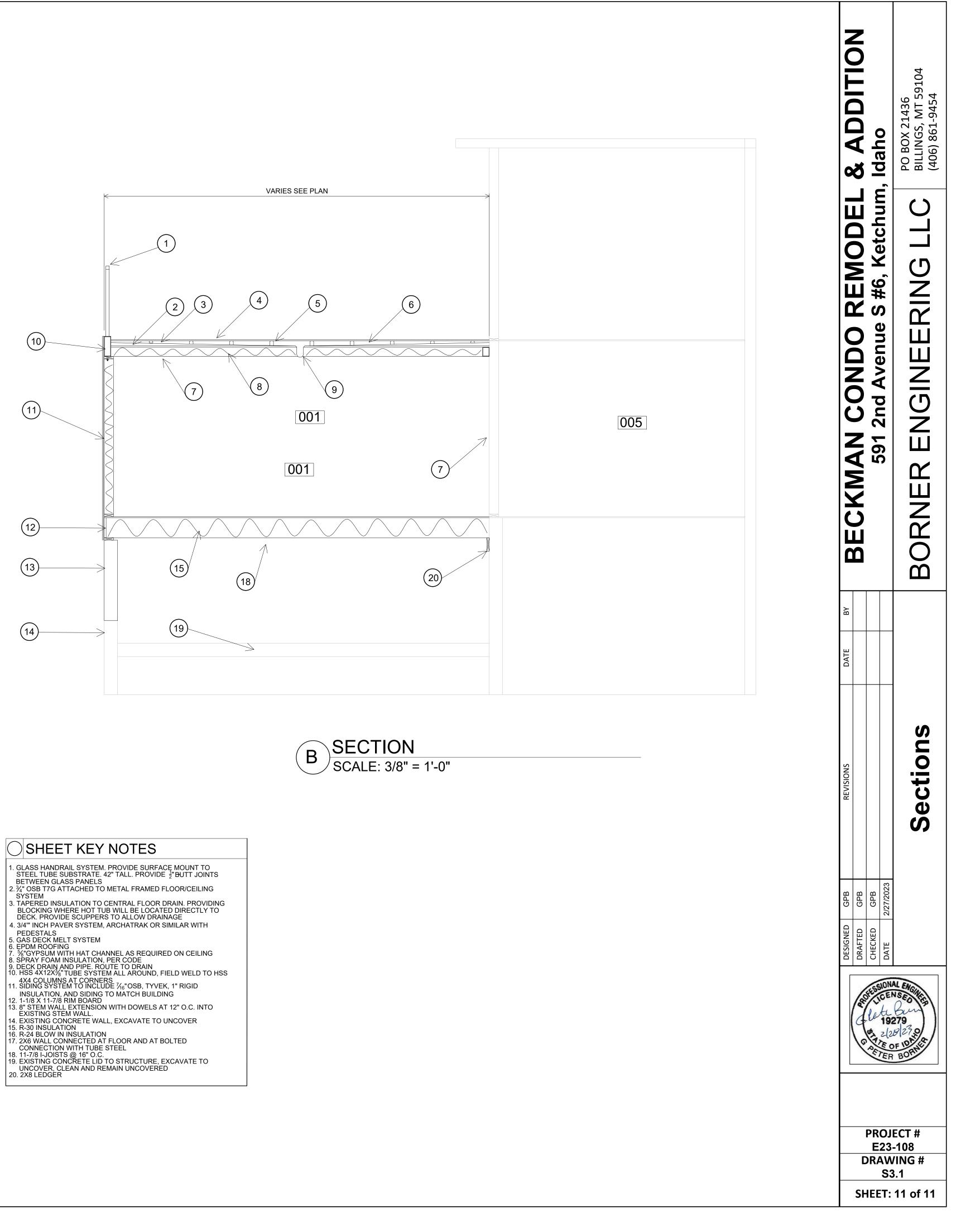
(E) WHERE SHEAR WALL NOTED AT EXISTING WALL, VERIFY SHEAR TO REMAIN, REPLACE OR UPGRADE AS REQUIRED

CHEDULE	
TIONS	

HDR-2	

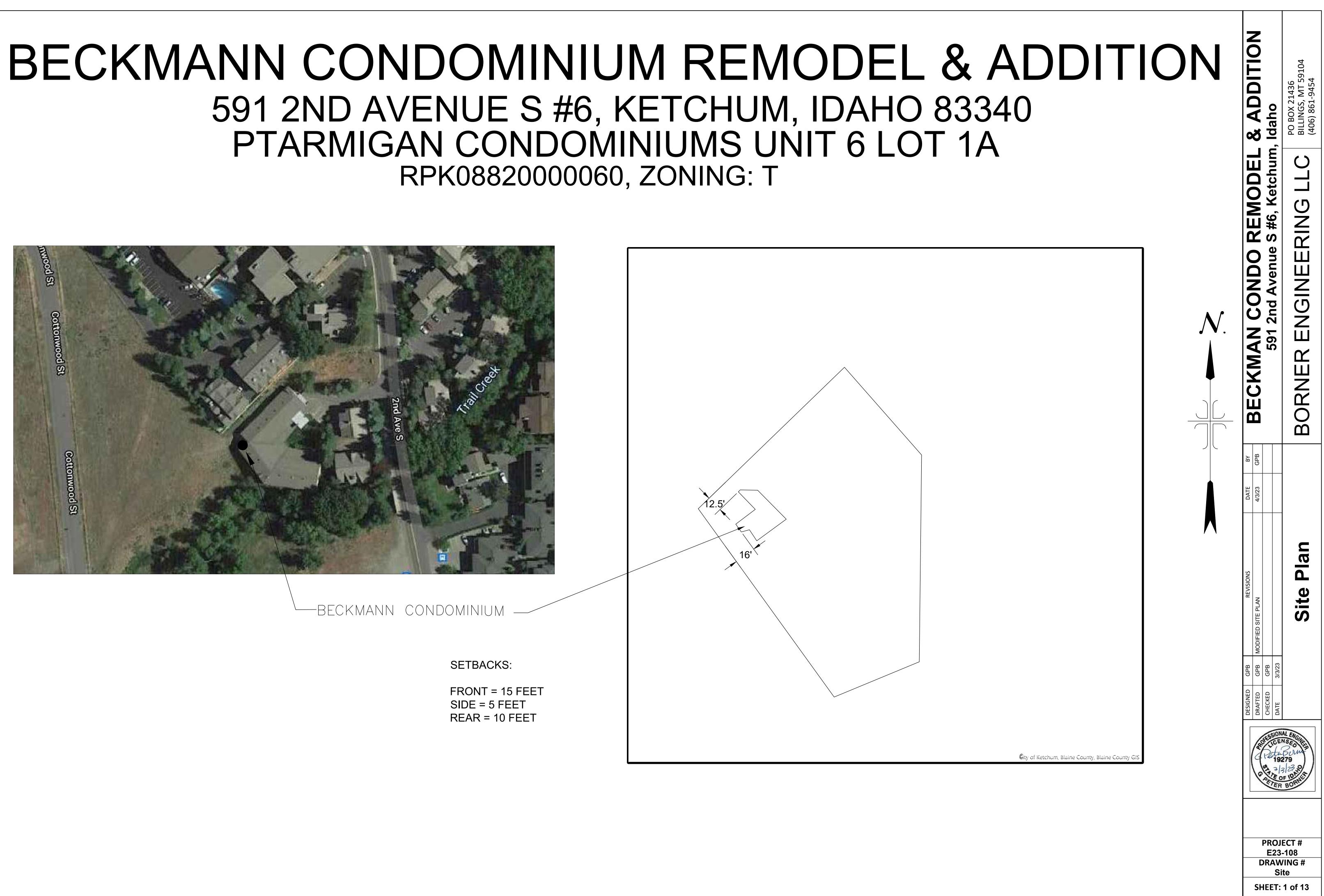

NEW WALL 2 x 6 AT 16" o.c.

VERIFY EXISTING WALL TO REMAIN


PANELS SHALL NOT BE LESS THAN 4'X8' EXCEPT AT BOUNDARIES AND CHANGES IN FRAMING, ALL EDGES SHALL BE SUPPORTED AND FASTENED TO

PROVIDE SHEAR WALL EDGE NAILING AT EDGES AND AT TOP AND BOTTOM

			501 Jud Avenue S #6 Ketchum Idaho		BORNER ENGINEERING LLC PO BOX 21436 BILLINGS, MT 59104 (406) 861-9454
ì	ВΥ				
	KEVISIONS DAIE				Floor /Roof Framing
	GPB	GPB	GPB	2/27/2023	st
	DESIGNED	DRAFTED	CHECKED	DATE	
		200	Starte 1	192 2/2 TER	AL ENGINEER VISEO 279 0 23 0 BORNUR BORNUR BORNUR



RPK08820000060, ZONING: T

